• 제목/요약/키워드: Deep learning Network

검색결과 2,363건 처리시간 0.036초

Deep Learning-based Evolutionary Recommendation Model for Heterogeneous Big Data Integration

  • Yoo, Hyun;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3730-3744
    • /
    • 2020
  • This study proposes a deep learning-based evolutionary recommendation model for heterogeneous big data integration, for which collaborative filtering and a neural-network algorithm are employed. The proposed model is used to apply an individual's importance or sensory level to formulate a recommendation using the decision-making feedback. The evolutionary recommendation model is based on the Deep Neural Network (DNN), which is useful for analyzing and evaluating the feedback data among various neural-network algorithms, and the DNN is combined with collaborative filtering. The designed model is used to extract health information from data collected by the Korea National Health and Nutrition Examination Survey, and the collaborative filtering-based recommendation model was compared with the deep learning-based evolutionary recommendation model to evaluate its performance. The RMSE is used to evaluate the performance of the proposed model. According to the comparative analysis, the accuracy of the deep learning-based evolutionary recommendation model is superior to that of the collaborative filtering-based recommendation model.

A3C 기반의 강화학습을 사용한 DASH 시스템 (A DASH System Using the A3C-based Deep Reinforcement Learning)

  • 최민제;임경식
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.297-307
    • /
    • 2022
  • The simple procedural segment selection algorithm commonly used in Dynamic Adaptive Streaming over HTTP (DASH) reveals severe weakness to provide high-quality streaming services in the integrated mobile networks of various wired and wireless links. A major issue could be how to properly cope with dynamically changing underlying network conditions. The key to meet it should be to make the segment selection algorithm much more adaptive to fluctuation of network traffics. This paper presents a system architecture that replaces the existing procedural segment selection algorithm with a deep reinforcement learning algorithm based on the Asynchronous Advantage Actor-Critic (A3C). The distributed A3C-based deep learning server is designed and implemented to allow multiple clients in different network conditions to stream videos simultaneously, collect learning data quickly, and learn asynchronously, resulting in greatly improved learning speed as the number of video clients increases. The performance analysis shows that the proposed algorithm outperforms both the conventional DASH algorithm and the Deep Q-Network algorithm in terms of the user's quality of experience and the speed of deep learning.

Application of Deep Learning: A Review for Firefighting

  • Shaikh, Muhammad Khalid
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.73-78
    • /
    • 2022
  • The aim of this paper is to investigate the prevalence of Deep Learning in the literature on Fire & Rescue Service. It is found that deep learning techniques are only beginning to benefit the firefighters. The popular areas where deep learning techniques are making an impact are situational awareness, decision making, mental stress, injuries, well-being of the firefighter such as his sudden fall, inability to move and breathlessness, path planning by the firefighters while getting to an fire scene, wayfinding, tracking firefighters, firefighter physical fitness, employment, prediction of firefighter intervention, firefighter operations such as object recognition in smoky areas, firefighter efficacy, smart firefighting using edge computing, firefighting in teams, and firefighter clothing and safety. The techniques that were found applied in firefighting were Deep learning, Traditional K-Means clustering with engineered time and frequency domain features, Convolutional autoencoders, Long Short-Term Memory (LSTM), Deep Neural Networks, Simulation, VR, ANN, Deep Q Learning, Deep learning based on conditional generative adversarial networks, Decision Trees, Kalman Filters, Computational models, Partial Least Squares, Logistic Regression, Random Forest, Edge computing, C5 Decision Tree, Restricted Boltzmann Machine, Reinforcement Learning, and Recurrent LSTM. The literature review is centered on Firefighters/firemen not involved in wildland fires. The focus was also not on the fire itself. It must also be noted that several deep learning techniques such as CNN were mostly used in fire behavior, fire imaging and identification as well. Those papers that deal with fire behavior were also not part of this literature review.

Arabic Text Recognition with Harakat Using Deep Learning

  • Ashwag, Maghraby;Esraa, Samkari
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.41-46
    • /
    • 2023
  • Because of the significant role that harakat plays in Arabic text, this paper used deep learning to extract Arabic text with its harakat from an image. Convolutional neural networks and recurrent neural network algorithms were applied to the dataset, which contained 110 images, each representing one word. The results showed the ability to extract some letters with harakat.

An Improved Intrusion Detection System for SDN using Multi-Stage Optimized Deep Forest Classifier

  • Saritha Reddy, A;Ramasubba Reddy, B;Suresh Babu, A
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.374-386
    • /
    • 2022
  • Nowadays, research in deep learning leveraged automated computing and networking paradigm evidenced rapid contributions in terms of Software Defined Networking (SDN) and its diverse security applications while handling cybercrimes. SDN plays a vital role in sniffing information related to network usage in large-scale data centers that simultaneously support an improved algorithm design for automated detection of network intrusions. Despite its security protocols, SDN is considered contradictory towards DDoS attacks (Distributed Denial of Service). Several research studies developed machine learning-based network intrusion detection systems addressing detection and mitigation of DDoS attacks in SDN-based networks due to dynamic changes in various features and behavioral patterns. Addressing this problem, this research study focuses on effectively designing a multistage hybrid and intelligent deep learning classifier based on modified deep forest classification to detect DDoS attacks in SDN networks. Experimental results depict that the performance accuracy of the proposed classifier is improved when evaluated with standard parameters.

A Deep Learning Approach for Intrusion Detection

  • Roua Dhahbi;Farah Jemili
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.89-96
    • /
    • 2023
  • Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

딥러닝 기술을 이용한 트러스 구조물의 손상 탐지 (Damage Detection in Truss Structures Using Deep Learning Techniques)

  • 이승혜;이기학;이재홍
    • 한국공간구조학회논문집
    • /
    • 제19권1호
    • /
    • pp.93-100
    • /
    • 2019
  • There has been considerable recent interest in deep learning techniques for structural analysis and design. However, despite newer algorithms and more precise methods have been developed in the field of computer science, the recent effective deep learning techniques have not been applied to the damage detection topics. In this study, we have explored the structural damage detection method of truss structures using the state-of-the-art deep learning techniques. The deep neural networks are used to train knowledge of the patterns in the response of the undamaged and the damaged structures. A 31-bar planar truss are considered to show the capabilities of the deep learning techniques for identifying the single or multiple-structural damage. The frequency responses and the elasticity moduli of individual elements are used as input and output datasets, respectively. In all considered cases, the neural network can assess damage conditions with very good accuracy.

딥러닝을 이용한 광학적 프린지 패턴의 생성 (Generation of optical fringe patterns using deep learning)

  • 강지원;김동욱;서영호
    • 한국정보통신학회논문지
    • /
    • 제24권12호
    • /
    • pp.1588-1594
    • /
    • 2020
  • 본 논문에서는 심층신경망(deep neural network, DNN)을 이용하여 디지털 홀로그램을 생성하는 신경망의 학습을 위한 데이터 균형 조정 방법에 대하여 논의 한다. 심층신경망은 딥러닝(deep learning, DL) 기술에 기반을 두고 있고, 생성형 적대적 네트워크(generative adversarial network, GAN)계열을 이용한다. 심층 신경망을 통하여 생성 하고자하는 홀로그램의 기본 단위인 프린지 패턴은 홀로그램 평면과 객체의 위치에 따라 데이터의 형태가 매우 다르다. 하지만 데이터의 분류 기준이 명확하지 않기 때문에 학습 데이터의 불균형이 생길 수 있다. 학습 데이터의 불균형은 곧 학습의 불안정 요소로 작용한다. 따라서 분류 기준이 명확하지 않은 데이터를 분류하고 균형을 맞추는 방법을 제시한다. 그리고 이를 통하여 학습이 안정화됨을 보인다.

깊은 신경망 기반의 전이학습을 이용한 사운드 이벤트 분류 (Sound event classification using deep neural network based transfer learning)

  • 임형준;김명종;김회린
    • 한국음향학회지
    • /
    • 제35권2호
    • /
    • pp.143-148
    • /
    • 2016
  • 깊은 신경망은 데이터의 특성을 효과적으로 나타낼 수 있는 방법으로 최근 많은 응용 분야에서 활용되고 있다. 하지만, 제한적인 양의 데이터베이스는 깊은 신경망을 훈련하는 과정에서 과적합 문제를 야기할 수 있다. 본 논문에서는 풍부한 양의 음성 혹은 음악 데이터를 이용한 전이학습을 통해 제한적인 양의 사운드 이벤트에 대한 깊은 신경망을 효과적으로 훈련하는 방법을 제안한다. 일련의 실험을 통해 제안하는 방법이 적은 양의 사운드 이벤트 데이터만으로 훈련된 깊은 신경망에 비해 현저한 성능 향상이 있음을 확인하였다.