• Title/Summary/Keyword: Deep learning CNN

Search Result 1,086, Processing Time 0.026 seconds

CNN based IEEE 802.11 WLAN frame format detection (CNN 기반의 IEEE 802.11 WLAN 프레임 포맷 검출)

  • Kim, Minjae;Ahn, Heungseop;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.27-33
    • /
    • 2020
  • Backward compatibility is one of the key issues for radio equipment supporting IEEE 802.11, the typical wireless local area networks (WLANs) communication protocol. For a successful packet decoding with the backward compatibility, the frame format detection is a core precondition. This paper presents a novel frame format detection method based on a deep learning procedure for WLANs affiliated with IEEE 802.11. Considering that the detection performance of conventional methods is degraded mainly due to the poor performances in the symbol synchronization and/or channel estimation in low signal-to-noise-ratio environments, we propose a novel detection method based on convolutional neural network (CNN) that replaces the entire conventional detection procedures. The proposed deep learning network provides a robust detection directly from the receive data. Through extensive computer simulations performed in the multipath fading channel environments (modeled by Project IEEE 802.11 Task Group ac), the proposed method exhibits superb improvement in the frame format detection compared to the conventional method.

Impacts of label quality on performance of steel fatigue crack recognition using deep learning-based image segmentation

  • Hsu, Shun-Hsiang;Chang, Ting-Wei;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.207-220
    • /
    • 2022
  • Structural health monitoring (SHM) plays a vital role in the maintenance and operation of constructions. In recent years, autonomous inspection has received considerable attention because conventional monitoring methods are inefficient and expensive to some extent. To develop autonomous inspection, a potential approach of crack identification is needed to locate defects. Therefore, this study exploits two deep learning-based segmentation models, DeepLabv3+ and Mask R-CNN, for crack segmentation because these two segmentation models can outperform other similar models on public datasets. Additionally, impacts of label quality on model performance are explored to obtain an empirical guideline on the preparation of image datasets. The influence of image cropping and label refining are also investigated, and different strategies are applied to the dataset, resulting in six alternated datasets. By conducting experiments with these datasets, the highest mean Intersection-over-Union (mIoU), 75%, is achieved by Mask R-CNN. The rise in the percentage of annotations by image cropping improves model performance while the label refining has opposite effects on the two models. As the label refining results in fewer error annotations of cracks, this modification enhances the performance of DeepLabv3+. Instead, the performance of Mask R-CNN decreases because fragmented annotations may mistake an instance as multiple instances. To sum up, both DeepLabv3+ and Mask R-CNN are capable of crack identification, and an empirical guideline on the data preparation is presented to strengthen identification successfulness via image cropping and label refining.

Performance Evaluation of Machine Learning and Deep Learning Algorithms in Crop Classification: Impact of Hyper-parameters and Training Sample Size (작물분류에서 기계학습 및 딥러닝 알고리즘의 분류 성능 평가: 하이퍼파라미터와 훈련자료 크기의 영향 분석)

  • Kim, Yeseul;Kwak, Geun-Ho;Lee, Kyung-Do;Na, Sang-Il;Park, Chan-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.811-827
    • /
    • 2018
  • The purpose of this study is to compare machine learning algorithm and deep learning algorithm in crop classification using multi-temporal remote sensing data. For this, impacts of machine learning and deep learning algorithms on (a) hyper-parameter and (2) training sample size were compared and analyzed for Haenam-gun, Korea and Illinois State, USA. In the comparison experiment, support vector machine (SVM) was applied as machine learning algorithm and convolutional neural network (CNN) was applied as deep learning algorithm. In particular, 2D-CNN considering 2-dimensional spatial information and 3D-CNN with extended time dimension from 2D-CNN were applied as CNN. As a result of the experiment, it was found that the hyper-parameter values of CNN, considering various hyper-parameter, defined in the two study areas were similar compared with SVM. Based on this result, although it takes much time to optimize the model in CNN, it is considered that it is possible to apply transfer learning that can extend optimized CNN model to other regions. Then, in the experiment results with various training sample size, the impact of that on CNN was larger than SVM. In particular, this impact was exaggerated in Illinois State with heterogeneous spatial patterns. In addition, the lowest classification performance of 3D-CNN was presented in Illinois State, which is considered to be due to over-fitting as complexity of the model. That is, the classification performance was relatively degraded due to heterogeneous patterns and noise effect of input data, although the training accuracy of 3D-CNN model was high. This result simply that a proper classification algorithms should be selected considering spatial characteristics of study areas. Also, a large amount of training samples is necessary to guarantee higher classification performance in CNN, particularly in 3D-CNN.

Deep Learning-based Pes Planus Classification Model Using Transfer Learning

  • Kim, Yeonho;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.21-28
    • /
    • 2021
  • This study proposes a deep learning-based flat foot classification methodology using transfer learning. We used a transfer learning with VGG16 pre-trained model and a data augmentation technique to generate a model with high predictive accuracy from a total of 176 image data consisting of 88 flat feet and 88 normal feet. To evaluate the performance of the proposed model, we performed an experiment comparing the prediction accuracy of the basic CNN-based model and the prediction model derived through the proposed methodology. In the case of the basic CNN model, the training accuracy was 77.27%, the validation accuracy was 61.36%, and the test accuracy was 59.09%. Meanwhile, in the case of our proposed model, the training accuracy was 94.32%, the validation accuracy was 86.36%, and the test accuracy was 84.09%, indicating that the accuracy of our model was significantly higher than that of the basic CNN model.

An Analysis of Plant Diseases Identification Based on Deep Learning Methods

  • Xulu Gong;Shujuan Zhang
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.319-334
    • /
    • 2023
  • Plant disease is an important factor affecting crop yield. With various types and complex conditions, plant diseases cause serious economic losses, as well as modern agriculture constraints. Hence, rapid, accurate, and early identification of crop diseases is of great significance. Recent developments in deep learning, especially convolutional neural network (CNN), have shown impressive performance in plant disease classification. However, most of the existing datasets for plant disease classification are a single background environment rather than a real field environment. In addition, the classification can only obtain the category of a single disease and fail to obtain the location of multiple different diseases, which limits the practical application. Therefore, the object detection method based on CNN can overcome these shortcomings and has broad application prospects. In this study, an annotated apple leaf disease dataset in a real field environment was first constructed to compensate for the lack of existing datasets. Moreover, the Faster R-CNN and YOLOv3 architectures were trained to detect apple leaf diseases in our dataset. Finally, comparative experiments were conducted and a variety of evaluation indicators were analyzed. The experimental results demonstrate that deep learning algorithms represented by YOLOv3 and Faster R-CNN are feasible for plant disease detection and have their own strong points and weaknesses.

Deep Learning-based Delinquent Taxpayer Prediction: A Scientific Administrative Approach

  • YongHyun Lee;Eunchan Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.30-45
    • /
    • 2024
  • This study introduces an effective method for predicting individual local tax delinquencies using prevalent machine learning and deep learning algorithms. The evaluation of credit risk holds great significance in the financial realm, impacting both companies and individuals. While credit risk prediction has been explored using statistical and machine learning techniques, their application to tax arrears prediction remains underexplored. We forecast individual local tax defaults in Republic of Korea using machine and deep learning algorithms, including convolutional neural networks (CNN), long short-term memory (LSTM), and sequence-to-sequence (seq2seq). Our model incorporates diverse credit and public information like loan history, delinquency records, credit card usage, and public taxation data, offering richer insights than prior studies. The results highlight the superior predictive accuracy of the CNN model. Anticipating local tax arrears more effectively could lead to efficient allocation of administrative resources. By leveraging advanced machine learning, this research offers a promising avenue for refining tax collection strategies and resource management.

Design of new CNN structure with internal FC layer (내부 FC층을 갖는 새로운 CNN 구조의 설계)

  • Park, Hee-mun;Park, Sung-chan;Hwang, Kwang-bok;Choi, Young-kiu;Park, Jin-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.466-467
    • /
    • 2018
  • Recently, artificial intelligence has been applied to various fields such as image recognition, image recognition speech recognition, and natural language processing, and interest in Deep Learning technology is increasing. Many researches on Convolutional Neural Network(CNN), which is one of the most representative algorithms among Deep Learning, have strong advantages in image recognition and classification and are widely used in various fields. In this paper, we propose a new network structure that transforms the general CNN structure. A typical CNN structure consists of a convolution layer, ReLU layer, and a pooling layer. Therefore in this paper, We intend to construct a new network by adding fully connected layer inside a general CNN structure. This modification is intended to increase the learning and accuracy of the convoluted image by including the generalization which is an advantage of the neural network.

  • PDF

Deep Learning System based on Morphological Neural Network (몰포러지 신경망 기반 딥러닝 시스템)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.92-98
    • /
    • 2019
  • In this paper, we propose a deep learning system based on morphological neural network(MNN). The deep learning layers are morphological operation layer, pooling layer, ReLU layer, and the fully connected layer. The operations used in morphological layer are erosion, dilation, and edge detection, etc. Unlike CNN, the number of hidden layers and kernels applied to each layer is limited in MNN. Because of the reduction of processing time and utility of VLSI chip design, it is possible to apply MNN to various mobile embedded systems. MNN performs the edge and shape detection operations with a limited number of kernels. Through experiments using database images, it is confirmed that MNN can be used as a deep learning system and its performance.

Synthesizing Image and Automated Annotation Tool for CNN based Under Water Object Detection (강건한 CNN기반 수중 물체 인식을 위한 이미지 합성과 자동화된 Annotation Tool)

  • Jeon, MyungHwan;Lee, Yeongjun;Shin, Young-Sik;Jang, Hyesu;Yeu, Taekyeong;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.139-149
    • /
    • 2019
  • In this paper, we present auto-annotation tool and synthetic dataset using 3D CAD model for deep learning based object detection. To be used as training data for deep learning methods, class, segmentation, bounding-box, contour, and pose annotations of the object are needed. We propose an automated annotation tool and synthetic image generation. Our resulting synthetic dataset reflects occlusion between objects and applicable for both underwater and in-air environments. To verify our synthetic dataset, we use MASK R-CNN as a state-of-the-art method among object detection model using deep learning. For experiment, we make the experimental environment reflecting the actual underwater environment. We show that object detection model trained via our dataset show significantly accurate results and robustness for the underwater environment. Lastly, we verify that our synthetic dataset is suitable for deep learning model for the underwater environments.

Fashion Clothing Image Classification Deep Learning (패션 의류 영상 분류 딥러닝)

  • Shin, Seong-Yoon;Wang, Guangxing;Shin, Kwang-Seong;Lee, Hyun-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.676-677
    • /
    • 2022
  • In this paper, we propose a new method based on a deep learning model with an optimized dynamic decay learning rate and improved model structure to achieve fast and accurate classification of fashion clothing images. Experiments are performed using the model proposed in the Fashion-MNIST dataset and compared with methods of CNN, LeNet, LSTM and BiLSTM.

  • PDF