As sputter equipment becomes more complex, it becomes increasingly difficult to understand the parameters that affect the thickness uniformity of thin metal film deposited by sputter. To address this issue, we verified a deep learning model that can predict complex relationships. Specifically, we trained the model to predict the height of 36 magnets based on the thickness of the material, using Support Vector Machine (SVM), Multilayer Perceptron (MLP), 1D-Convolutional Neural Network (1D-CNN), and 2D-Convolutional Neural Network (2D-CNN) algorithms. After evaluating each model, we found that the MLP model exhibited the best performance, especially when the dataset was constructed regardless of the thin film material. In conclusion, our study suggests that it is possible to predict the sputter equipment source using film thickness data through a deep learning model, which makes it easier to understand the relationship between film thickness and sputter equipment.
현재 사이버 공격이 더욱 지능화됨에 따라 기존의 침입 탐지 시스템(Intrusion Detection System)은 저장된 패턴에서 벗어난 지능형 공격을 탐지하기 어렵다. 이를 해결하려는 방법으로, 데이터 학습을 통해 지능형 공격의 패턴을 분석하는 딥러닝(Deep Learning) 기반의 침입 탐지 시스템 모델이 등장했다. 침입 탐지 시스템은 설치 위치에 따라 호스트 기반과 네트워크 기반으로 구분된다. 호스트 기반 침입 탐지 시스템은 네트워크 기반 침입 탐지 시스템과 달리 시스템 내부와 외부를 전체적으로 관찰해야 하는 단점이 있다. 하지만 네트워크 기반 침입 탐지 시스템에서 탐지할 수 없는 침입을 탐지할 수 있는 장점이 있다. 따라서, 본 연구에서는 호스트 기반의 침입 탐지 시스템에 관한 연구를 수행했다. 호스트 기반의 침입 탐지 시스템 모델의 성능을 평가하고 개선하기 위해서 2018년에 공개된 호스트 기반 LID-DS(Leipzig Intrusion Detection-Data Set)를 사용했다. 해당 데이터 세트를 통한 모델의 성능 평가에 있어서 각 데이터에 대한 유사성을 확인하여 정상 데이터인지 비정상 데이터인지 식별하기 위해 1차원 벡터 데이터를 3차원 이미지 데이터로 변환하여 재구성했다. 또한, 딥러닝 모델은 새로운 사이버 공격 방법이 발견될 때마다 학습을 다시 해야 한다는 단점이 있다. 즉, 데이터의 양이 많을수록 학습하는 시간이 오래 걸리기 때문에 효율적이지 못하다. 이를 해결하기 위해 본 논문에서는 적은 양의 데이터를 학습하여 우수한 성능을 보이는 Few-Shot Learning 기법을 사용하기 위해 Siamese-CNN(Siamese Convolutional Neural Network)을 제안한다. Siamese-CNN은 이미지로 변환한 각 사이버 공격의 샘플에 대한 유사성 점수에 의해 같은 유형의 공격인지 아닌지 판단한다. 정확성은 Few-Shot Learning 기법을 사용하여 정확성을 계산했으며, Siamese-CNN의 성능을 확인하기 위해 Vanilla-CNN(Vanilla Convolutional Neural Network)과 Siamese-CNN의 성능을 비교했다. Accuracy, Precision, Recall 및 F1-Score 지표를 측정한 결과, Vanilla-CNN 모델보다 본 연구에서 제안한 Siamese-CNN 모델의 Recall이 약 6% 증가한 것을 확인했다.
본 연구는 Transformer 모듈을 기반으로 다양한 구조의 모델을 구성하고, 토지피복 분류를 수행하여 Transformer 모듈의 활용방안 검토를 목적으로 하였다. 토지피복 분류를 위한 딥러닝 모델은 CNN 구조를 가진 Unet 모델을 베이스 모델로 선정하였으며, 모델의 인코더 및 디코더 부분을 Transformer 모듈과 조합하여 총 4가지 딥러닝 모델을 구축하였다. 딥러닝 모델의 학습과정에서 일반화 성능 평가를 위해 같은 학습조건으로 10회 반복하여 학습을 진행하였다. 딥러닝 모델의 분류 정확도 평가결과, 모델의 인코더 및 디코더 구조 모두 Transformer 모듈을 활용한 D모델이 전체 정확도 평균 약 89.4%, Kappa 평균 약 73.2%로 가장 높은 정확도를 보였다. 학습 소요시간 측면에서는 CNN 기반의 모델이 가장 효율적이었으나 Transformer 기반의 모델을 활용할 경우, 분류 정확도가 Kappa 기준 평균 0.5% 개선되었다. 차후, CNN 모델과 Transformer의 결합과정에서 하이퍼파라미터 조절과 이미지 패치사이즈 조절 등 다양한 변수들을 고려하여 모델을 고도화 할 필요가 있다고 판단된다. 토지피복 분류과정에서 모든 모델이 공통적으로 발생한 문제점은 소규모 객체들의 탐지가 어려운 점이었다. 이러한 오분류 현상의 개선을 위해서는 고해상도 입력자료의 활용방안 검토와 함께 지형 정보 및 질감 정보를 포함한 다차원적 데이터 통합이 필요할 것으로 판단된다.
최근 컴퓨터 비전 기술의 발전으로 스마트도시에서는 합리적인 정확도로 복잡한 동작을 인식할 수 있다. 이와는 대조적으로, 싸움과 칼에 관련된 사건과 같은 폭력적인 인식은 관심을 덜 이끌었다. 시각적인 감시 능력은 거리나 교도소에서의 싸움을 감지하는데 사용될 수 있다. 이 논문에서 우리는 감시 카메라에 대한 심층 학습 기반의 폭력 인식 방법을 제안했다. 컨볼루션 뉴럴 네트워크(CNN) 모델은 폭력 인식을 위한 싸움과 칼의 벤치마크 데이터 셋에 대해 훈련하고 세부적으로 조정된다. 비정상적인 이벤트가 감지되면 가장 가까운 경찰서로 경보를 보내는 즉각적인 조치를 취할 수 있다. 제안된 방법의 실험 결과는 99.21%의 정확도를 달성함으로써 다른 최첨단 CNN모델을 능가했다.
Monitoring through Synthesis Aperture Radar (SAR) is responsible for marine safety from floating icebergs. However, there are limits to distinguishing between icebergs and ships in SAR images. Convolutional Neural Network (CNN) is used to distinguish the iceberg from the ship. The goal of this paper is to increase the accuracy of identifying icebergs from SAR images. The metrics for performance evaluation uses the log loss. The two-layer CNN model proposed in research of C.Bentes et al.[1] is used as a benchmark model and compared with the four-layer CNN model using data augmentation. Finally, the performance of the final CNN model using the VGG-16 pre-trained model is compared with the previous model. This paper shows how to improve the benchmark model and propose the final CNN model.
Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권6호
/
pp.2168-2187
/
2021
The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.
본 연구는 딥러닝(Deep Learning) 알고리즘 GAN 모델을 기반으로 초미세먼지(PM2.5) 인공지능 예측시스템을 개발한다. 실험 데이터는 시계열 축으로 생성된 온도, 습도, 풍속, 기압의 기상변화와 SO2, CO, O3, NO2, PM10와 같은 대기오염물질 농도와 밀접한 관련이 있다. 데이터 특성상, 현재시간 농도가 이전시간 농도에 영향을 받기 때문에 반복지도학습(Recursive Supervised Learning) 예측 모델을 적용하였다. 기존 모델인 CNN, LSTM의 정확도(Accuracy)를 비교분석을 위해 관측값(Observation Value)과 예측값(Prediction Value)간의 차이를 분석하고 시각화했다. 성능분석 결과 제안하는 GAN이 LSTM 대비 평가항목 RMSE, MAPE, IOA에서 각각 15.8%, 10.9%, 5.5%로 향상된 것을 확인하였다.
The purpose of this study is to compare the models of Deep Learning-based Convolution Neural Network(CNN) for concrete crack detection. The comparison models are AlexNet, GoogLeNet, VGG16, VGG19, ResNet-18, ResNet-50, ResNet-101, and SqueezeNet which won ImageNet Large Scale Visual Recognition Challenge(ILSVRC). To train, validate and test these models, we constructed 3000 training data and 12000 validation data with 256×256 pixel resolution consisting of cracked and non-cracked images, and constructed 5 test data with 4160×3120 pixel resolution consisting of concrete images with crack. In order to increase the efficiency of the training, transfer learning was performed by taking the weight from the pre-trained network supported by MATLAB. From the trained network, the validation data is classified into crack image and non-crack image, yielding True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN), and 6 performance indicators, False Negative Rate (FNR), False Positive Rate (FPR), Error Rate, Recall, Precision, Accuracy were calculated. The test image was scanned twice with a sliding window of 256×256 pixel resolution to classify the cracks, resulting in a crack map. From the comparison of the performance indicators and the crack map, it was concluded that VGG16 and VGG19 were the most suitable for detecting concrete cracks.
Lee, Jin;Choi, Kwang Jong;Kim, Seong Jung;Oh, Ji Eun;Yoon, Woong Bae;Kim, Kwang Gi
Journal of Multimedia Information System
/
제3권3호
/
pp.97-102
/
2016
Deep learning enables machines to have perception and can potentially outperform humans in the medical field. It can save a lot of time and reduce human error by detecting certain patterns from medical images without being trained. The main goal of this paper is to build the optimal model for breast mass classification by applying various methods that influence the performance of Convolutional Neural Network (CNN). Google's newly developed software library Tensorflow was used to build CNN and the mammogram dataset used in this study was obtained from 340 breast cancer cases. The best classification performance we achieved was an accuracy of 0.887, sensitivity of 0.903, and specificity of 0.869 for normal tissue versus malignant mass classification with augmented data, more convolutional filters, and ADAM optimizer. A limitation of this method, however, was that it only considered malignant masses which are relatively easier to classify than benign masses. Therefore, further studies are required in order to properly classify any given data for medical uses.
최근 고해상도 원격탐사 자료의 분류방안으로 컨볼루션 신경망(Convolutional Neural Networks)을 비롯한 딥 러닝 기법들이 소개되고 있다. 본 논문에서는 드론으로 촬영된 농경지 영상의 작물 분류를 위해 컨볼루션 신경망을 적용하여 가능성을 검토하였다. 농경지를 논, 고구마, 고추, 옥수수, 깻잎, 과수, 비닐하우스로 총 7가지 클래스로 나누고 수동으로 라벨링 작업을 완료했다. 컨볼루션 신경망 적용을 위해 영상 전처리와 정규화 작업을 수행하였으며 영상분류 결과 98%이상 높은 정확도를 확인할 수 있었다. 본 논문을 통해 기존 영상분류 방법들에서 딥 러닝 기반 영상분류 방법으로의 전환이 빠르게 진행될 것으로 예상되며, 그 성공 가능성을 확신할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.