• 제목/요약/키워드: Deep learning CNN

검색결과 1,108건 처리시간 0.028초

스퍼터 금속 박막 균일도 예측을 위한 딥러닝 기반 모델 검증 연구 (Verified Deep Learning-based Model Research for Improved Uniformity of Sputtered Metal Thin Films)

  • 이은지;유영준;변창우;김진평
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.113-117
    • /
    • 2023
  • As sputter equipment becomes more complex, it becomes increasingly difficult to understand the parameters that affect the thickness uniformity of thin metal film deposited by sputter. To address this issue, we verified a deep learning model that can predict complex relationships. Specifically, we trained the model to predict the height of 36 magnets based on the thickness of the material, using Support Vector Machine (SVM), Multilayer Perceptron (MLP), 1D-Convolutional Neural Network (1D-CNN), and 2D-Convolutional Neural Network (2D-CNN) algorithms. After evaluating each model, we found that the MLP model exhibited the best performance, especially when the dataset was constructed regardless of the thin film material. In conclusion, our study suggests that it is possible to predict the sputter equipment source using film thickness data through a deep learning model, which makes it easier to understand the relationship between film thickness and sputter equipment.

  • PDF

Few-Shot Learning을 사용한 호스트 기반 침입 탐지 모델 (Host-Based Intrusion Detection Model Using Few-Shot Learning)

  • 박대경;신동일;신동규;김상수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권7호
    • /
    • pp.271-278
    • /
    • 2021
  • 현재 사이버 공격이 더욱 지능화됨에 따라 기존의 침입 탐지 시스템(Intrusion Detection System)은 저장된 패턴에서 벗어난 지능형 공격을 탐지하기 어렵다. 이를 해결하려는 방법으로, 데이터 학습을 통해 지능형 공격의 패턴을 분석하는 딥러닝(Deep Learning) 기반의 침입 탐지 시스템 모델이 등장했다. 침입 탐지 시스템은 설치 위치에 따라 호스트 기반과 네트워크 기반으로 구분된다. 호스트 기반 침입 탐지 시스템은 네트워크 기반 침입 탐지 시스템과 달리 시스템 내부와 외부를 전체적으로 관찰해야 하는 단점이 있다. 하지만 네트워크 기반 침입 탐지 시스템에서 탐지할 수 없는 침입을 탐지할 수 있는 장점이 있다. 따라서, 본 연구에서는 호스트 기반의 침입 탐지 시스템에 관한 연구를 수행했다. 호스트 기반의 침입 탐지 시스템 모델의 성능을 평가하고 개선하기 위해서 2018년에 공개된 호스트 기반 LID-DS(Leipzig Intrusion Detection-Data Set)를 사용했다. 해당 데이터 세트를 통한 모델의 성능 평가에 있어서 각 데이터에 대한 유사성을 확인하여 정상 데이터인지 비정상 데이터인지 식별하기 위해 1차원 벡터 데이터를 3차원 이미지 데이터로 변환하여 재구성했다. 또한, 딥러닝 모델은 새로운 사이버 공격 방법이 발견될 때마다 학습을 다시 해야 한다는 단점이 있다. 즉, 데이터의 양이 많을수록 학습하는 시간이 오래 걸리기 때문에 효율적이지 못하다. 이를 해결하기 위해 본 논문에서는 적은 양의 데이터를 학습하여 우수한 성능을 보이는 Few-Shot Learning 기법을 사용하기 위해 Siamese-CNN(Siamese Convolutional Neural Network)을 제안한다. Siamese-CNN은 이미지로 변환한 각 사이버 공격의 샘플에 대한 유사성 점수에 의해 같은 유형의 공격인지 아닌지 판단한다. 정확성은 Few-Shot Learning 기법을 사용하여 정확성을 계산했으며, Siamese-CNN의 성능을 확인하기 위해 Vanilla-CNN(Vanilla Convolutional Neural Network)과 Siamese-CNN의 성능을 비교했다. Accuracy, Precision, Recall 및 F1-Score 지표를 측정한 결과, Vanilla-CNN 모델보다 본 연구에서 제안한 Siamese-CNN 모델의 Recall이 약 6% 증가한 것을 확인했다.

CNN 모델과 Transformer 조합을 통한 토지피복 분류 정확도 개선방안 검토 (Assessing Techniques for Advancing Land Cover Classification Accuracy through CNN and Transformer Model Integration)

  • 심우담;이정수
    • 한국지리정보학회지
    • /
    • 제27권1호
    • /
    • pp.115-127
    • /
    • 2024
  • 본 연구는 Transformer 모듈을 기반으로 다양한 구조의 모델을 구성하고, 토지피복 분류를 수행하여 Transformer 모듈의 활용방안 검토를 목적으로 하였다. 토지피복 분류를 위한 딥러닝 모델은 CNN 구조를 가진 Unet 모델을 베이스 모델로 선정하였으며, 모델의 인코더 및 디코더 부분을 Transformer 모듈과 조합하여 총 4가지 딥러닝 모델을 구축하였다. 딥러닝 모델의 학습과정에서 일반화 성능 평가를 위해 같은 학습조건으로 10회 반복하여 학습을 진행하였다. 딥러닝 모델의 분류 정확도 평가결과, 모델의 인코더 및 디코더 구조 모두 Transformer 모듈을 활용한 D모델이 전체 정확도 평균 약 89.4%, Kappa 평균 약 73.2%로 가장 높은 정확도를 보였다. 학습 소요시간 측면에서는 CNN 기반의 모델이 가장 효율적이었으나 Transformer 기반의 모델을 활용할 경우, 분류 정확도가 Kappa 기준 평균 0.5% 개선되었다. 차후, CNN 모델과 Transformer의 결합과정에서 하이퍼파라미터 조절과 이미지 패치사이즈 조절 등 다양한 변수들을 고려하여 모델을 고도화 할 필요가 있다고 판단된다. 토지피복 분류과정에서 모든 모델이 공통적으로 발생한 문제점은 소규모 객체들의 탐지가 어려운 점이었다. 이러한 오분류 현상의 개선을 위해서는 고해상도 입력자료의 활용방안 검토와 함께 지형 정보 및 질감 정보를 포함한 다차원적 데이터 통합이 필요할 것으로 판단된다.

스마트 감시 애플리케이션을 위해 Deep CNN을 이용한 폭력인식 (Violence Recognition using Deep CNN for Smart Surveillance Applications)

  • 파튜 유 민 울라;아민 울라;칸 무함마드;이미영;백성욱
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권5호
    • /
    • pp.53-59
    • /
    • 2018
  • 최근 컴퓨터 비전 기술의 발전으로 스마트도시에서는 합리적인 정확도로 복잡한 동작을 인식할 수 있다. 이와는 대조적으로, 싸움과 칼에 관련된 사건과 같은 폭력적인 인식은 관심을 덜 이끌었다. 시각적인 감시 능력은 거리나 교도소에서의 싸움을 감지하는데 사용될 수 있다. 이 논문에서 우리는 감시 카메라에 대한 심층 학습 기반의 폭력 인식 방법을 제안했다. 컨볼루션 뉴럴 네트워크(CNN) 모델은 폭력 인식을 위한 싸움과 칼의 벤치마크 데이터 셋에 대해 훈련하고 세부적으로 조정된다. 비정상적인 이벤트가 감지되면 가장 가까운 경찰서로 경보를 보내는 즉각적인 조치를 취할 수 있다. 제안된 방법의 실험 결과는 99.21%의 정확도를 달성함으로써 다른 최첨단 CNN모델을 능가했다.

Iceberg-Ship Classification in SAR Images Using Convolutional Neural Network with Transfer Learning

  • 최정환
    • 인터넷정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.35-44
    • /
    • 2018
  • Monitoring through Synthesis Aperture Radar (SAR) is responsible for marine safety from floating icebergs. However, there are limits to distinguishing between icebergs and ships in SAR images. Convolutional Neural Network (CNN) is used to distinguish the iceberg from the ship. The goal of this paper is to increase the accuracy of identifying icebergs from SAR images. The metrics for performance evaluation uses the log loss. The two-layer CNN model proposed in research of C.Bentes et al.[1] is used as a benchmark model and compared with the four-layer CNN model using data augmentation. Finally, the performance of the final CNN model using the VGG-16 pre-trained model is compared with the previous model. This paper shows how to improve the benchmark model and propose the final CNN model.

Multi Label Deep Learning classification approach for False Data Injection Attacks in Smart Grid

  • Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2168-2187
    • /
    • 2021
  • The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.

딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석 (Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm)

  • 김영희;장관종
    • 융합정보논문지
    • /
    • 제11권3호
    • /
    • pp.7-13
    • /
    • 2021
  • 본 연구는 딥러닝(Deep Learning) 알고리즘 GAN 모델을 기반으로 초미세먼지(PM2.5) 인공지능 예측시스템을 개발한다. 실험 데이터는 시계열 축으로 생성된 온도, 습도, 풍속, 기압의 기상변화와 SO2, CO, O3, NO2, PM10와 같은 대기오염물질 농도와 밀접한 관련이 있다. 데이터 특성상, 현재시간 농도가 이전시간 농도에 영향을 받기 때문에 반복지도학습(Recursive Supervised Learning) 예측 모델을 적용하였다. 기존 모델인 CNN, LSTM의 정확도(Accuracy)를 비교분석을 위해 관측값(Observation Value)과 예측값(Prediction Value)간의 차이를 분석하고 시각화했다. 성능분석 결과 제안하는 GAN이 LSTM 대비 평가항목 RMSE, MAPE, IOA에서 각각 15.8%, 10.9%, 5.5%로 향상된 것을 확인하였다.

콘크리트 균열 탐지를 위한 딥 러닝 기반 CNN 모델 비교 (Comparison of Deep Learning-based CNN Models for Crack Detection)

  • 설동현;오지훈;김홍진
    • 대한건축학회논문집:구조계
    • /
    • 제36권3호
    • /
    • pp.113-120
    • /
    • 2020
  • The purpose of this study is to compare the models of Deep Learning-based Convolution Neural Network(CNN) for concrete crack detection. The comparison models are AlexNet, GoogLeNet, VGG16, VGG19, ResNet-18, ResNet-50, ResNet-101, and SqueezeNet which won ImageNet Large Scale Visual Recognition Challenge(ILSVRC). To train, validate and test these models, we constructed 3000 training data and 12000 validation data with 256×256 pixel resolution consisting of cracked and non-cracked images, and constructed 5 test data with 4160×3120 pixel resolution consisting of concrete images with crack. In order to increase the efficiency of the training, transfer learning was performed by taking the weight from the pre-trained network supported by MATLAB. From the trained network, the validation data is classified into crack image and non-crack image, yielding True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN), and 6 performance indicators, False Negative Rate (FNR), False Positive Rate (FPR), Error Rate, Recall, Precision, Accuracy were calculated. The test image was scanned twice with a sliding window of 256×256 pixel resolution to classify the cracks, resulting in a crack map. From the comparison of the performance indicators and the crack map, it was concluded that VGG16 and VGG19 were the most suitable for detecting concrete cracks.

Breast Mass Classification using the Fundamental Deep Learning Approach: To build the optimal model applying various methods that influence the performance of CNN

  • Lee, Jin;Choi, Kwang Jong;Kim, Seong Jung;Oh, Ji Eun;Yoon, Woong Bae;Kim, Kwang Gi
    • Journal of Multimedia Information System
    • /
    • 제3권3호
    • /
    • pp.97-102
    • /
    • 2016
  • Deep learning enables machines to have perception and can potentially outperform humans in the medical field. It can save a lot of time and reduce human error by detecting certain patterns from medical images without being trained. The main goal of this paper is to build the optimal model for breast mass classification by applying various methods that influence the performance of Convolutional Neural Network (CNN). Google's newly developed software library Tensorflow was used to build CNN and the mammogram dataset used in this study was obtained from 340 breast cancer cases. The best classification performance we achieved was an accuracy of 0.887, sensitivity of 0.903, and specificity of 0.869 for normal tissue versus malignant mass classification with augmented data, more convolutional filters, and ADAM optimizer. A limitation of this method, however, was that it only considered malignant masses which are relatively easier to classify than benign masses. Therefore, further studies are required in order to properly classify any given data for medical uses.

컨볼루션 신경망을 기반으로 한 드론 영상 분류 (Drone Image Classification based on Convolutional Neural Networks)

  • 주영도
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.97-102
    • /
    • 2017
  • 최근 고해상도 원격탐사 자료의 분류방안으로 컨볼루션 신경망(Convolutional Neural Networks)을 비롯한 딥 러닝 기법들이 소개되고 있다. 본 논문에서는 드론으로 촬영된 농경지 영상의 작물 분류를 위해 컨볼루션 신경망을 적용하여 가능성을 검토하였다. 농경지를 논, 고구마, 고추, 옥수수, 깻잎, 과수, 비닐하우스로 총 7가지 클래스로 나누고 수동으로 라벨링 작업을 완료했다. 컨볼루션 신경망 적용을 위해 영상 전처리와 정규화 작업을 수행하였으며 영상분류 결과 98%이상 높은 정확도를 확인할 수 있었다. 본 논문을 통해 기존 영상분류 방법들에서 딥 러닝 기반 영상분류 방법으로의 전환이 빠르게 진행될 것으로 예상되며, 그 성공 가능성을 확신할 수 있었다.