• Title/Summary/Keyword: Deep learning CNN

Search Result 1,095, Processing Time 0.032 seconds

Classification Method based on Graph Neural Network Model for Diagnosing IoT Device Fault (사물인터넷 기기 고장 진단을 위한 그래프 신경망 모델 기반 분류 방법)

  • Kim, Jin-Young;Seon, Joonho;Yoon, Sung-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.9-14
    • /
    • 2022
  • In the IoT(internet of things) where various devices can be connected, failure of essential devices may lead to a lot of economic and life losses. For reducing the losses, fault diagnosis techniques have been considered an essential part of IoT. In this paper, the method based on a graph neural network is proposed for determining fault and classifying types by extracting features from vibration data of systems. For training of the deep learning model, fault dataset are used as input data obtained from the CWRU(case western reserve university). To validate the classification performance of the proposed model, a conventional CNN(convolutional neural networks)-based fault classification model is compared with the proposed model. From the simulation results, it was confirmed that the classification performance of the proposed model outweighed the conventional model by up to 5% in the unevenly distributed data. The classification runtime can be improved by lightweight the proposed model in future works.

Development of Radar Super Resolution Algorithm based on a Deep Learning (딥러닝 기술 기반의 레이더 초해상화 알고리즘 기술 개발)

  • Ho-Jun Kim;Sumiya Uranchimeg;Hemie Cho;Hyun-Han Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.417-417
    • /
    • 2023
  • 도시홍수는 도시의 주요 기능을 마비시킬 수 있는 수재해로서, 최근 집중호우로 인해 홍수 및 침수 위험도가 증가하고 있다. 집중호우는 한정된 지역에 단시간 동안 집중적으로 폭우가 발생하는 현상을 의미하며, 도시 지역에서 강우 추정 및 예보를 위해 레이더의 활용이 증대되고 있다. 레이더는 수상체 또는 구름으로부터 반사되는 신호를 분석해서 강우량을 측정하는 장비이다. 기상청의 기상레이더(S밴드)의 주요 목적은 남한에 발생하는 기상현상 탐지 및 악기상 대비이다. 관측반경이 넓기에 도시 지역에 적합하지 않는 반면, X밴드 이중편파레이더는 높은 시공간 해상도를 갖는 관측자료를 제공하기에 도시 지역에 대한 강우 추정 및 예보의 정확도가 상대적으로 높다. 따라서, 본 연구에서는 딥러닝 기반 초해상화(Super Resolution) 기술을 활용하여 저해상도(Low Resolution. LR) 영상인 S밴드 레이더 자료로부터 고해상도(High Resolution, HR) 영상을 생성하는 기술을 개발하였다. 초해상도 연구는 Nearest Neighbor, Bicubic과 같은 간단한 보간법(interpolation)에서 시작하여, 최근 딥러닝 기반의 초해상화 알고리즘은 가장 일반화된 합성곱 신경망(CNN)을 통해 연구가 이루어지고 있다. X밴드 레이더 반사도 자료를 고해상도(HR), S밴드 레이더 반사도 자료를 저해상도(LR) 입력자료로 사용하여 초해상화 모형을 구성하였다. 2018~2020년에 발생한 서울시 호우 사례를 중심으로 데이터를 구축하였다. 구축된 데이터로부터 훈련된 초해상도 심층신경망 모형으로부터 저해상도 이미지를 고해상도로 변환한 결과를 PSNR(Peak Signal-to-noise Ratio), SSIM(Structural SIMilarity)와 같은 평가지표로 결과를 평가하였다. 본 연구를 통해 기존 방법들에 비해 높은 공간적 해상도를 갖는 레이더 자료를 생산할 수 있을 것으로 기대된다.

  • PDF

Correlation Extraction from KOSHA to enable the Development of Computer Vision based Risks Recognition System

  • Khan, Numan;Kim, Youjin;Lee, Doyeop;Tran, Si Van-Tien;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.87-95
    • /
    • 2020
  • Generally, occupational safety and particularly construction safety is an intricate phenomenon. Industry professionals have devoted vital attention to enforcing Occupational Safety and Health (OHS) from the last three decades to enhance safety management in construction. Despite the efforts of the safety professionals and government agencies, current safety management still relies on manual inspections which are infrequent, time-consuming and prone to error. Extensive research has been carried out to deal with high fatality rates confronting by the construction industry. Sensor systems, visualization-based technologies, and tracking techniques have been deployed by researchers in the last decade. Recently in the construction industry, computer vision has attracted significant attention worldwide. However, the literature revealed the narrow scope of the computer vision technology for safety management, hence, broad scope research for safety monitoring is desired to attain a complete automatic job site monitoring. With this regard, the development of a broader scope computer vision-based risk recognition system for correlation detection between the construction entities is inevitable. For this purpose, a detailed analysis has been conducted and related rules which depict the correlations (positive and negative) between the construction entities were extracted. Deep learning supported Mask R-CNN algorithm is applied to train the model. As proof of concept, a prototype is developed based on real scenarios. The proposed approach is expected to enhance the effectiveness of safety inspection and reduce the encountered burden on safety managers. It is anticipated that this approach may enable a reduction in injuries and fatalities by implementing the exact relevant safety rules and will contribute to enhance the overall safety management and monitoring performance.

  • PDF

Research on Pothole Detection using Feature-Level Ensemble of Pretrained Deep Learning Models (사전 학습된 딥러닝 모델들의 피처 레벨 앙상블을 이용한 포트홀 검출 기법 연구)

  • Ye-Eun Shin;Inki Kim;Beomjun Kim;Younghoon Jeon;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.35-38
    • /
    • 2023
  • 포트홀은 주행하는 자동차와 접촉이 이뤄지면 차체나 운전자에게 충격을 주고 제어를 잃게 하여 도로 위 안전을 위협할 수 있다. 포트홀의 검출을 위한 국내 동향으로는 진동을 이용한 방식과 신고시스템 이용한 방식과 영상 인식을 기반한 방식이 있다. 이 중 영상 인식 기반 방식은 보급이 쉽고 비용이 저렴하나, 컴퓨터 비전 알고리즘은 영상의 품질에 따라 정확도가 달라지는 문제가 있었다. 이를 보완하기 위해 영상 인식 기반의 딥러닝 모델을 사용한다. 따라서, 본 논문에서는 사전 학습된 딥러닝 모델의 정확도 향상을 위한 Feature Level Ensemble 기법을 제안한다. 제안된 기법은 사전 학습된 CNN 모델 중 Test 데이터의 정확도 기준 Top-3 모델을 선정하여 각 딥러닝 모델의 Feature Map을 Concatenate하고 이를 Fully-Connected(FC) Layer로 입력하여 구현한다. Feature Level Ensemble 기법이 적용된 딥러닝 모델은 평균 대비 3.76%의 정확도 향상을 보였으며, Top-1 모델인 ShuffleNet보다 0.94%의 정확도 향상을 보였다. 결론적으로 본 논문에서 제안된 기법은 사전 학습된 모델들을 이용하여 각 모델의 다양한 특징을 통해 기존 모델 대비 정확도의 향상을 이룰 수 있었다.

  • PDF

Resolving Memory Bottlenecks in Hardware Accelerators with Data Prefetch

  • Hyein Lee;Jinoo Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.1-12
    • /
    • 2024
  • Deep learning with faster and more accurate results requires large amounts of storage space and large computations. Accordingly, many studies are using hardware accelerators for quick and accurate calculations. However, the performance bottleneck is due to data movement between the hardware accelerators and the CPU. In this paper, we propose a data prefetch strategy that can efficiently reduce such operational bottlenecks. The core idea of the data prefetch strategy is to predict the data needed for the next task and upload it to local memory while the hardware accelerator (Matrix Multiplication Unit, MMU) performs a task. This strategy can be enhanced by using a dual buffer to perform read and write operations simultaneously. This reduces latency and execution time of data transfer. Through simulations, we demonstrate a 24% improvement in the performance of hardware accelerators by maximizing parallel processing with dual buffers and bottlenecks between memories with data prefetch.

A Unicode based Deep Handwritten Character Recognition model for Telugu to English Language Translation

  • BV Subba Rao;J. Nageswara Rao;Bandi Vamsi;Venkata Nagaraju Thatha;Katta Subba Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.101-112
    • /
    • 2024
  • Telugu language is considered as fourth most used language in India especially in the regions of Andhra Pradesh, Telangana, Karnataka etc. In international recognized countries also, Telugu is widely growing spoken language. This language comprises of different dependent and independent vowels, consonants and digits. In this aspect, the enhancement of Telugu Handwritten Character Recognition (HCR) has not been propagated. HCR is a neural network technique of converting a documented image to edited text one which can be used for many other applications. This reduces time and effort without starting over from the beginning every time. In this work, a Unicode based Handwritten Character Recognition(U-HCR) is developed for translating the handwritten Telugu characters into English language. With the use of Centre of Gravity (CG) in our model we can easily divide a compound character into individual character with the help of Unicode values. For training this model, we have used both online and offline Telugu character datasets. To extract the features in the scanned image we used convolutional neural network along with Machine Learning classifiers like Random Forest and Support Vector Machine. Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMS-P) and Adaptative Moment Estimation (ADAM)optimizers are used in this work to enhance the performance of U-HCR and to reduce the loss function value. This loss value reduction can be possible with optimizers by using CNN. In both online and offline datasets, proposed model showed promising results by maintaining the accuracies with 90.28% for SGD, 96.97% for RMS-P and 93.57% for ADAM respectively.

A Study on the Improvement of Source Code Static Analysis Using Machine Learning (기계학습을 이용한 소스코드 정적 분석 개선에 관한 연구)

  • Park, Yang-Hwan;Choi, Jin-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1131-1139
    • /
    • 2020
  • The static analysis of the source code is to find the remaining security weaknesses for a wide range of source codes. The static analysis tool is used to check the result, and the static analysis expert performs spying and false detection analysis on the result. In this process, the amount of analysis is large and the rate of false positives is high, so a lot of time and effort is required, and a method of efficient analysis is required. In addition, it is rare for experts to analyze only the source code of the line where the defect occurred when performing positive/false detection analysis. Depending on the type of defect, the surrounding source code is analyzed together and the final analysis result is delivered. In order to solve the difficulty of experts discriminating positive and false positives using these static analysis tools, this paper proposes a method of determining whether or not the security weakness found by the static analysis tools is a spy detection through artificial intelligence rather than an expert. In addition, the optimal size was confirmed through an experiment to see how the size of the training data (source code around the defects) used for such machine learning affects the performance. This result is expected to help the static analysis expert's job of classifying positive and false positives after static analysis.

Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity (문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안)

  • Lee, Min Seok;Yang, Seok Woo;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.105-122
    • /
    • 2019
  • Dimensionality reduction is one of the methods to handle big data in text mining. For dimensionality reduction, we should consider the density of data, which has a significant influence on the performance of sentence classification. It requires lots of computations for data of higher dimensions. Eventually, it can cause lots of computational cost and overfitting in the model. Thus, the dimension reduction process is necessary to improve the performance of the model. Diverse methods have been proposed from only lessening the noise of data like misspelling or informal text to including semantic and syntactic information. On top of it, the expression and selection of the text features have impacts on the performance of the classifier for sentence classification, which is one of the fields of Natural Language Processing. The common goal of dimension reduction is to find latent space that is representative of raw data from observation space. Existing methods utilize various algorithms for dimensionality reduction, such as feature extraction and feature selection. In addition to these algorithms, word embeddings, learning low-dimensional vector space representations of words, that can capture semantic and syntactic information from data are also utilized. For improving performance, recent studies have suggested methods that the word dictionary is modified according to the positive and negative score of pre-defined words. The basic idea of this study is that similar words have similar vector representations. Once the feature selection algorithm selects the words that are not important, we thought the words that are similar to the selected words also have no impacts on sentence classification. This study proposes two ways to achieve more accurate classification that conduct selective word elimination under specific regulations and construct word embedding based on Word2Vec embedding. To select words having low importance from the text, we use information gain algorithm to measure the importance and cosine similarity to search for similar words. First, we eliminate words that have comparatively low information gain values from the raw text and form word embedding. Second, we select words additionally that are similar to the words that have a low level of information gain values and make word embedding. In the end, these filtered text and word embedding apply to the deep learning models; Convolutional Neural Network and Attention-Based Bidirectional LSTM. This study uses customer reviews on Kindle in Amazon.com, IMDB, and Yelp as datasets, and classify each data using the deep learning models. The reviews got more than five helpful votes, and the ratio of helpful votes was over 70% classified as helpful reviews. Also, Yelp only shows the number of helpful votes. We extracted 100,000 reviews which got more than five helpful votes using a random sampling method among 750,000 reviews. The minimal preprocessing was executed to each dataset, such as removing numbers and special characters from text data. To evaluate the proposed methods, we compared the performances of Word2Vec and GloVe word embeddings, which used all the words. We showed that one of the proposed methods is better than the embeddings with all the words. By removing unimportant words, we can get better performance. However, if we removed too many words, it showed that the performance was lowered. For future research, it is required to consider diverse ways of preprocessing and the in-depth analysis for the co-occurrence of words to measure similarity values among words. Also, we only applied the proposed method with Word2Vec. Other embedding methods such as GloVe, fastText, ELMo can be applied with the proposed methods, and it is possible to identify the possible combinations between word embedding methods and elimination methods.

Development of Intelligent Severity of Atopic Dermatitis Diagnosis Model using Convolutional Neural Network (합성곱 신경망(Convolutional Neural Network)을 활용한 지능형 아토피피부염 중증도 진단 모델 개발)

  • Yoon, Jae-Woong;Chun, Jae-Heon;Bang, Chul-Hwan;Park, Young-Min;Kim, Young-Joo;Oh, Sung-Min;Jung, Joon-Ho;Lee, Suk-Jun;Lee, Ji-Hyun
    • Management & Information Systems Review
    • /
    • v.36 no.4
    • /
    • pp.33-51
    • /
    • 2017
  • With the advent of 'The Forth Industrial Revolution' and the growing demand for quality of life due to economic growth, needs for the quality of medical services are increasing. Artificial intelligence has been introduced in the medical field, but it is rarely used in chronic skin diseases that directly affect the quality of life. Also, atopic dermatitis, a representative disease among chronic skin diseases, has a disadvantage in that it is difficult to make an objective diagnosis of the severity of lesions. The aim of this study is to establish an intelligent severity recognition model of atopic dermatitis for improving the quality of patient's life. For this, the following steps were performed. First, image data of patients with atopic dermatitis were collected from the Catholic University of Korea Seoul Saint Mary's Hospital. Refinement and labeling were performed on the collected image data to obtain training and verification data that suitable for the objective intelligent atopic dermatitis severity recognition model. Second, learning and verification of various CNN algorithms are performed to select an image recognition algorithm that suitable for the objective intelligent atopic dermatitis severity recognition model. Experimental results showed that 'ResNet V1 101' and 'ResNet V2 50' were measured the highest performance with Erythema and Excoriation over 90% accuracy, and 'VGG-NET' was measured 89% accuracy lower than the two lesions due to lack of training data. The proposed methodology demonstrates that the image recognition algorithm has high performance not only in the field of object recognition but also in the medical field requiring expert knowledge. In addition, this study is expected to be highly applicable in the field of atopic dermatitis due to it uses image data of actual atopic dermatitis patients.

  • PDF

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.