• Title/Summary/Keyword: Deep geological disposal(DGD)

Search Result 6, Processing Time 0.02 seconds

Corrosion Behavior of Cu-Ni Alloy Film Fabricated by Wire-fed Additive Manufacturing in Oxic Groundwater

  • Gha-Young Kim;Jeong-Hyun Woo;Junhyuk Jang;Yang-Il Jung;Young-Ho Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.211-217
    • /
    • 2024
  • The growing significance of sustainable energy technologies underscores the need for safe and efficient management of spent nuclear fuels (SNFs), particularly via deep geological disposal (DGD). DGD involves the long-term isolation of SNFs from the biosphere to ensure public safety and environmental protection, necessitating materials with high corrosion resistance for DGD canisters. This study investigated the feasibility of a Cu-Ni film, fabricated via additive manufacturing (AM), as a corrosion-resistant layer for DGD canister applications. A wire-fed AM technique was used to deposit a millimeter-scale Cu-Ni film onto a carbon steel (CS) substrate. Electrochemical analyses were conducted using aerated groundwater from the KAERI underground research tunnel (KURT) as an electrolyte with an NaCl additive to characterize the oxic corrosion behavior of the Cu-Ni film. The results demonstrated that the AM-fabricated Cu-Ni film exhibited enhanced corrosion resistance (manifested as lower corrosion current density and formation of a dense passive layer) in an NaCl-supplemented groundwater solution. Extensive investigations are necessary to elucidate microstructural performance, mechanical properties, and corrosion resistance in the presence of various corroding agents to simplify the implementation of this technology for DGD canisters.

A Current Status of Natural Analogues Programs in Nations Considering High-Level Radioactive Waste Disposal

  • HunSuk Im;Dawoon Jeong;Min-Hoon Baik;Ji-Hun Ryu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.65-93
    • /
    • 2023
  • Several countries have been operating radioactive waste disposal (RWD) programs to construct their own repositories and have used natural analogues (NA) studies directly or indirectly to ensure the reliability of the long-term safety of deep geological disposal (DGD) systems. A DGD system in Korea has been under development, and for this purpose a generic NA study is necessary. The Korea Atomic Energy Research Institute has just launched the first national NA R&D program in Korea to identify the role of NA studies and to support the safety case in the RWD program. In this article, we review some cases of NA studies carried out in advanced countries considering crystalline rocks as candidate host rocks for high-level radioactive waste disposal. We examine the differences among these case studies and their roles in reflecting each country's disposal repository design. The legal basis and roadmap for NA studies in each country are also described. However because the results of this analysis depend upon different environmental conditions, they can be only used as important data for establishing various research strategies to strengthen the NA study environment for domestic disposal system research in Korea.

A Foreign Cases Study of the Deep Borehole Disposal System for High-Level Radioactive Waste (고준위 방사성폐기물 심부시추공 처분시스템 개발 해외사례 분석)

  • Lee, Jongyoul;Kim, Geonyoung;Bae, Daeseok;Kim, Kyeongsoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • If the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3~5 km and more stable rock formation, it has several advantages. For example, (1)significant fluid flow through basement rock is prevented, in part, by low permeability, poorly connected transport pathways, and (2)overburden self-sealing. (3)Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose-critical radionuclides at the depth. Finally, (4) high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept to the deep geological disposal concept(DGD), very deep borehole disposal(DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, for the preliminary applicability analyses of the DBD system for the spent fuels or high level wastes, the DBD concepts which have been developed by some countries according to the rapid advance in the development of drilling technology were reviewed. To do this, the general concept of DBD system was checked and the study cases of foreign countries were described and analyzed. These results will be used as an input for the analyses of applicability for DBD in Korea.

A Conceptual Study for Deep Borehole Disposal of High Level Radioactive Waste in Korea (국내 고준위 방사성 폐기물 심부시추공 처분을 위한 개념 연구)

  • Jeon, Byungkyu;Choi, Seungbeom;Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.75-88
    • /
    • 2019
  • With Kori nuclear power plant unit 1 as a beginning in April 1978, 24 nuclear power plants have been operated in Korea and two more plants are under construction. As the nuclear power plants being operated, radioactive wastes from the plants have been accumulated so that various methods for disposing them have been proposed. In Korea, researches have been conducted, being focused on DGD (Deep Geological Disposal), however, DBD (Deep Borehole Disposal) method needs considering as an alternative. In this technical note, element technologies for DBD were analyzed by compiling previous researches and their applicability on domestic cases were investigated. Conceptual studies regarding relevant designs were conducted and finally, technical challenges for actual disposal were described.

An Analysis of the Deep Geological Disposal Concepts Considering Spent Fuel Rods Consolidation (사용후핵연료봉 밀집을 고려한 심지층처분 개념 분석)

  • Lee, Jongyoul;Kim, Hyeona;Lee, Minsoo;Kim, Geonyoung;Choi, Heuijoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.287-297
    • /
    • 2014
  • For several decades, many countries operating nuclear power plants have been studying the various disposal alternatives to dispose of the spent nuclear fuel or high-level radioactive waste safely. In this paper, as a direct disposal of spent nuclear fuels for deep geological disposal concept, the rod consolidation from spent fuel assembly for the disposal efficiency was considered and analyzed. To do this, a concept of spent fuel rod consolidation was described and the related concepts of disposal canister and disposal system were reviewed. With these concepts, several thermal analyses were carried out to determine whether the most important requirement of the temperature limit for a buffer material was satisfiedin designing an engineered barrier of a deep geological disposal system. Based on the results of thermal analyses, the deposition hole distance, disposal tunnel spacing and heat release area of a disposal canister were reviewed. And the unit disposal areas for each case were calculated and the disposal efficiencies were evaluated. This evaluation showed that the rod consolidation of spent nuclear fuel had no advantages in terms of disposal efficiency. In addition, the cooling time of spent nuclear fuels from nuclear power plant were reviewed. It showed that the disposal efficiency for the consolidated spent fuel rods could be improved in the case that cooling time was 70 years or more. But, the integrity of fuels and other conditions due to the longer term storage before disposal should be analyzed.

An Analysis on the Deep Geological Disposal Concepts Considering the Spent Fuel Length (사용후핵연료 길이에 따른 심지층 처분시스템 분석)

  • LEE, Jongyoul;KIM, Hyeona;LEE, Minsoo;CHOI, Heuijoo;KIM, Keonyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.201-209
    • /
    • 2015
  • Currently, 23 nuclear power plants are in operation at Kori, Uljin, Younggwang and Wolsong site and a reference deep geological disposal system has been developed for the spent fuels generated by them. The reference spent fuel for this disposal system has 4.5wt% of initial enrichment, 55 GWd/MtU of burn-up, and 40 years of cooling time. In this paper, to improve disposal efficiency and economic feasibility, the characteristics of spent fuels from nuclear power plants, such as type and burn-up, were reviewed. A disposal canister concept for shorter length and relatively lower burn-up spent fuels than the reference spent fuels was developed. Based on this canister concept, thermal analyses were carried out and a deep geological disposal concept was proposed. Measures of disposal efficiency such as unit disposal area and disposal density were compared between this disposal system and the reference disposal system. Also, economic feasibility, such as the volume reduction of copper, cast iron, and bentonite, was analyzed and the results of these analyses showed that the disposal system proposed in this paper has an efficiency of at least 20%. These results could be used for establishing spent fuel management policy and designing practical disposal systems for spent fuels.