• 제목/요약/키워드: Deep belief network

검색결과 36건 처리시간 0.025초

Social Media based Real-time Event Detection by using Deep Learning Methods

  • Nguyen, Van Quan;Yang, Hyung-Jeong;Kim, Young-chul;Kim, Soo-hyung;Kim, Kyungbaek
    • 스마트미디어저널
    • /
    • 제6권3호
    • /
    • pp.41-48
    • /
    • 2017
  • Event detection using social media has been widespread since social network services have been an active communication channel for connecting with others, diffusing news message. Especially, the real-time characteristic of social media has created the opportunity for supporting for real-time applications/systems. Social network such as Twitter is the potential data source to explore useful information by mining messages posted by the user community. This paper proposed a novel system for temporal event detection by analyzing social data. As a result, this information can be used by first responders, decision makers, or news agents to gain insight of the situation. The proposed approach takes advantages of deep learning methods that play core techniques on the main tasks including informative data identifying from a noisy environment and temporal event detection. The former is the responsibility of Convolutional Neural Network model trained from labeled Twitter data. The latter is for event detection supported by Recurrent Neural Network module. We demonstrated our approach and experimental results on the case study of earthquake situations. Our system is more adaptive than other systems used traditional methods since deep learning enables to extract the features of data without spending lots of time constructing feature by hand. This benefit makes our approach adaptive to extend to a new context of practice. Moreover, the proposed system promised to respond to acceptable delay within several minutes that will helpful mean for supporting news channel agents or belief plan in case of disaster events.

딥러닝 기법을 이용한 내일강수 예측 (Forecasting the Precipitation of the Next Day Using Deep Learning)

  • 하지훈;이용희;김용혁
    • 한국지능시스템학회논문지
    • /
    • 제26권2호
    • /
    • pp.93-98
    • /
    • 2016
  • 정확한 강수예측을 위해서는 예측인자 선정과 예측방법에 대한 선택이 매우 중요하다. 최근에는 강수예측 방법으로 기계학습 기법이 많이 사용되고 있으며, 그 중에서도 특히 인공신경망을 사용한 강수예측 방법은 좋은 성능을 보였다. 본 논문에서는 딥러닝 기법 중 하나인 DBN(deep belief network)를 이용한 새로운 강수예측 방법을 제안한다. DBN는 비지도 사전 학습을 통해 초기 가중치를 설정하여 기존 인공신경망의 문제점을 보완한다. 예측인자로는 기온, 전일-전주 강수일, 태양과 달 궤도 관련 자료를 선정하였다. 기온과 전일-전주 강수일은 서울에서의 1974년부터 2013년까지 총 40년간의 AWS(automatic weather system) 관측 자료를 사용하였고, 태양과 달의 궤도 관련 자료는 서울을 중심으로 계산한 결과를 사용하였다. 전체 기간에서 일부는 학습 자료로 사용하여 예측모델을 생성하였고, 나머지를 생성한 모델의 검증 자료로 사용하였다. 모델 검증 결과로 나온 예측값들은 확률값을 가지며 임계치를 이용하여 강수유무를 판별하였다. 강수 정확도의 척도로 양분예보기법 중 CSI(critical successive index)와 Bias(frequency bias)를 계산하였다. 이를 통해 DBN와 MLP(multilayer perceptron)의 성능을 비교한 결과 DBN의 강수 예측 정확도가 높았고, 수행속도 또한 2배 이상 빨랐다.

A Step towards the Improvement in the Performance of Text Classification

  • Hussain, Shahid;Mufti, Muhammad Rafiq;Sohail, Muhammad Khalid;Afzal, Humaira;Ahmad, Ghufran;Khan, Arif Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2162-2179
    • /
    • 2019
  • The performance of text classification is highly related to the feature selection methods. Usually, two tasks are performed when a feature selection method is applied to construct a feature set; 1) assign score to each feature and 2) select the top-N features. The selection of top-N features in the existing filter-based feature selection methods is biased by their discriminative power and the empirical process which is followed to determine the value of N. In order to improve the text classification performance by presenting a more illustrative feature set, we present an approach via a potent representation learning technique, namely DBN (Deep Belief Network). This algorithm learns via the semantic illustration of documents and uses feature vectors for their formulation. The nodes, iteration, and a number of hidden layers are the main parameters of DBN, which can tune to improve the classifier's performance. The results of experiments indicate the effectiveness of the proposed method to increase the classification performance and aid developers to make effective decisions in certain domains.

Dual Active Bridge 컨버터를 위한 인공지능 적응형 Gain-scheduling PI 제어기 (Artificial Intelligence Gain-scheduling Adaptive PI Controller Scheme for Dual Active Bridge Converter)

  • 김슬기;최현준;정지훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.556-557
    • /
    • 2014
  • This paper presents an artificial intelligence - Deep Belief Network (DBN) gain-scheduling adaptive PI controller scheme for dual active bridge (DAB) converter. The PI gains are allowed to vary within a predetermined range and therefore eliminate the problems faced by the conventional PI controller. The performance of the proposed controller is simulated and compared with the conventional fixed PI controller under various conditions. The experimental prototype of the DAB converter is implemented using a digital signal processor of TMS320F28335 manufactured by Texas Instrument to examine and to evaluate the performance criteria of the proposed controller. Simulation and experimental results show improvements in transient as well as steady state responses of the proposed controller over the conventional fixed PI controller.

  • PDF

2D Human Pose Estimation based on Object Detection using RGB-D information

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.800-816
    • /
    • 2018
  • In recent years, video surveillance research has been able to recognize various behaviors of pedestrians and analyze the overall situation of objects by combining image analysis technology and deep learning method. Human Activity Recognition (HAR), which is important issue in video surveillance research, is a field to detect abnormal behavior of pedestrians in CCTV environment. In order to recognize human behavior, it is necessary to detect the human in the image and to estimate the pose from the detected human. In this paper, we propose a novel approach for 2D Human Pose Estimation based on object detection using RGB-D information. By adding depth information to the RGB information that has some limitation in detecting object due to lack of topological information, we can improve the detecting accuracy. Subsequently, the rescaled region of the detected object is applied to ConVol.utional Pose Machines (CPM) which is a sequential prediction structure based on ConVol.utional Neural Network. We utilize CPM to generate belief maps to predict the positions of keypoint representing human body parts and to estimate human pose by detecting 14 key body points. From the experimental results, we can prove that the proposed method detects target objects robustly in occlusion. It is also possible to perform 2D human pose estimation by providing an accurately detected region as an input of the CPM. As for the future work, we will estimate the 3D human pose by mapping the 2D coordinate information on the body part onto the 3D space. Consequently, we can provide useful human behavior information in the research of HAR.

기계학습법을 통한 압축 벤토나이트의 열전도도 추정 모델 평가 (Evaluation of a Thermal Conductivity Prediction Model for Compacted Clay Based on a Machine Learning Method)

  • 윤석;방현태;김건영;전해민
    • 대한토목학회논문집
    • /
    • 제41권2호
    • /
    • pp.123-131
    • /
    • 2021
  • 완충재는 고준위 방사성 폐기물을 처분하기 위한 공학적 방벽 시스템에서 중요한 구성요소 중 하나이며 사용 후 핵연료가 담긴 처분용기와 암반사이에 채워지는 물질이기 때문에 지하수 유입으로부터 처분용기를 보호하고, 방사성 핵종 유출을 저지하는 중요한 역할을 수행한다. 따라서 공학적 방벽 시스템의 처분용기로부터 발생하는 고온의 열량은 완충재를 통하여 전파되기에 완충재의 열전도도는 처분시스템의 안전성 평가에 매우 중요하다. 본 연구에서는 국내에서 생산되는 압축 벤토나이트 완충재의 열전도도 예측을 위한 경험적 회귀 모델의 정합성을 검증하고 정확도를 높이기 위해 예측모델의 구축에 기계학습법을 적용해 보았다. 벤토나이트의 건조밀도, 함수비 및 온도 값을 바탕으로 열전도도를 예측하고자 하였으며, 이때 다항 회귀, 결정 트리, 서포트 벡터 머신, 앙상블, 가우시안 프로세스 회귀, 인공신경망, 심층 신뢰 신경망, 유전 프로그래밍과 같은 기계학습 기법을 적용하였다. 기계학습 기법을 이용하여 예측한 결과, 부스팅 기반의 앙상블 기법, 유전 프로그래밍, 3차 함수 기반의 SVM, 가우시안 프로세스 회귀의 기계학습기법을 활용한 모델이 선형 회귀 분석 기법에 비해 좋은 성능을 보였으며, 특히 앙상블의 부스팅 기법과 가우시안 프로세스 회귀 기법을 사용한 모델들이 가장 좋은 성능을 보였다.