• 제목/요약/키워드: Deep SVM

검색결과 133건 처리시간 0.021초

딥 러닝을 이용한 한국어 형태소의 원형 복원 오류 수정 (Error Correction in Korean Morpheme Recovery using Deep Learning)

  • 황현선;이창기
    • 정보과학회 논문지
    • /
    • 제42권11호
    • /
    • pp.1452-1458
    • /
    • 2015
  • 한국어 형태소 분석은 교착어 특성상 난이도가 높은 작업이다. 그 중에서 형태소의 원형 복원 작업은 규칙이나 기분석 사전 정보 등을 활용하는 방법이 주로 연구되었다. 그러나 이러한 방법들은 어휘 수준의 문맥 정보를 보지 못하기 때문에 원형 복원에 한계가 있다. 본 논문에서는 최근 자연어처리에 연구되고 있는 기계학습 방법인 딥 러닝(deep learning)을 사용하여 형태소의 원형 복원 문제의 해결을 시도하였다. 문맥 정보를 보기 위해 단어 표현(word embedding)을 사용하여 기존의 방법들 보다 높은 성능을 보였다. 실험 결과, '들/VV'과 '듣/VV'의 복원 문제에 대해서 97.97%로 기존의 자연어처리에 쓰이는 기계학습 방법 중 하나인 SVM(Support Vector Machine)의 96.22% 보다 1.75% 높은 성능을 보였다.

딥 러닝을 이용한 버그 담당자 자동 배정 연구 (Study on Automatic Bug Triage using Deep Learning)

  • 이선로;김혜민;이찬근;이기성
    • 정보과학회 논문지
    • /
    • 제44권11호
    • /
    • pp.1156-1164
    • /
    • 2017
  • 기존의 버그 담당자 자동 배정 연구들은 대부분 기계학습 알고리즘을 기반으로 예측 시스템을 구축하는 방식이었다. 따라서, 고성능의 기계학습 모델을 적용하는 것이 담당자 자동 배정 시스템 성능의 핵심이 된다고 할 수 있으며 관련 연구에서는 높은 성능을 보이는 SVM, Naive Bayes 등의 기계학습 모델들이 주로 사용되고 있다. 본 논문에서는 기계학습 분야에서 최근 좋은 성능을 보이고 있는 딥 러닝을 버그 담당자 자동 배정에 적용하고 그 성능을 평가한다. 실험 결과, 딥 러닝 기반 Bug Triage 시스템이 활성 개발자 대상 실험에서 48%의 정확도를 달성했으며 이는 기존의 기계학습 대비 최대 69%향상된 결과이다.

심층신경망 모델을 이용한 고해상도 KOMPSAT-3 위성영상 기반 토지피복분류 (Land Cover Classification Based on High Resolution KOMPSAT-3 Satellite Imagery Using Deep Neural Network Model)

  • 문갑수;김경섭;정윤재
    • 한국지리정보학회지
    • /
    • 제23권3호
    • /
    • pp.252-262
    • /
    • 2020
  • 원격탐사 분야에서 토지피복분류에는 머신러닝 기반의 SVM 모델이 대표적으로 활용되고 있는 한편, 신경망 모델을 이용한 연구도 지속적으로 수행되고 있다. 다목적실용위성의 고해상도 영상을 이용한 연구는 미흡한 실정이며, 따라서 본 연구에서는 고해상도 KOMPSAT-3 위성영상을 이용하여 신경망 모델의 토지피복분류 정확도를 평가하고자 하였다. 경주시 인근 해안지역의 위성영상을 취득하여 훈련자료를 제작하고, 물과 식생 및 육지의 세 항목에 대해 SVM, ANN 및 DNN 모델로 토지피복을 분류하였다. 분류 결과의 정확도를 오차 행렬을 통해 정량적으로 평가한 결과 DNN 모델을 활용한 토지피복분류가 92.0%의 정확도로 가장 우수한 결과를 나타냈다. 향후 다중 시기의 위성영상을 통해 훈련자료를 보완하고, 다양한 항목에 대한 분류를 수행 및 검증한다면 연구의 신뢰성을 높일 수 있을 것으로 판단된다.

Academic Registration Text Classification Using Machine Learning

  • Alhawas, Mohammed S;Almurayziq, Tariq S
    • International Journal of Computer Science & Network Security
    • /
    • 제22권1호
    • /
    • pp.93-96
    • /
    • 2022
  • Natural language processing (NLP) is utilized to understand a natural text. Text analysis systems use natural language algorithms to find the meaning of large amounts of text. Text classification represents a basic task of NLP with a wide range of applications such as topic labeling, sentiment analysis, spam detection, and intent detection. The algorithm can transform user's unstructured thoughts into more structured data. In this work, a text classifier has been developed that uses academic admission and registration texts as input, analyzes its content, and then automatically assigns relevant tags such as admission, graduate school, and registration. In this work, the well-known algorithms support vector machine SVM and K-nearest neighbor (kNN) algorithms are used to develop the above-mentioned classifier. The obtained results showed that the SVM classifier outperformed the kNN classifier with an overall accuracy of 98.9%. in addition, the mean absolute error of SVM was 0.0064 while it was 0.0098 for kNN classifier. Based on the obtained results, the SVM is used to implement the academic text classification in this work.

Correlation Analysis of Airline Customer Satisfaction using Random Forest with Deep Neural Network and Support Vector Machine Model

  • Hong, Sang Hoon;Kim, Bumsu;Jung, Yong Gyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.26-32
    • /
    • 2020
  • There are many airline customer evaluation data, but they are insufficient in terms of predicting customer satisfaction in practice. In particular, they are generally insufficient in case of verification of data value and development of a customer satisfaction prediction model based on customer evaluation data. In this paper, airline customer satisfaction analysis is conducted through an experiment of correlation analysis between customer evaluation data provided by Google's Kaggle. The difference in accuracy varied according to the three types, which are the overall variables, the top 4 and top 8 variables with the highest correlation. To build an airline customer satisfaction prediction model, they are applied to three classification algorithms of Random Forest, SVM, DNN and conduct a classification experiment. They are divided into training data and verification data by 7:3. As a result, the DNN model showed the lowest accuracy at 86.4%, while the SVM model at 89% and the Random Forest model at 95.7% showed the highest accuracy and performance.

A Predictive Model to identify possible affected Bipolar disorder students using Naive Baye's, Random Forest and SVM machine learning techniques of data mining and Building a Sequential Deep Learning Model using Keras

  • Peerbasha, S.;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • 제21권5호
    • /
    • pp.267-274
    • /
    • 2021
  • Medical care practices include gathering a wide range of student data that are with manic episodes and depression which would assist the specialist with diagnosing a health condition of the students correctly. In this way, the instructors of the specific students will also identify those students and take care of them well. The data which we collected from the students could be straightforward indications seen by them. The artificial intelligence has been utilized with Naive Baye's classification, Random forest classification algorithm, SVM algorithm to characterize the datasets which we gathered to check whether the student is influenced by Bipolar illness or not. Performance analysis of the disease data for the algorithms used is calculated and compared. Also, a sequential deep learning model is builded using Keras. The consequences of the simulations show the efficacy of the grouping techniques on a dataset, just as the nature and complexity of the dataset utilized.

Sentimental Analysis of Twitter Data Using Machine Learning and Deep Learning: Nickel Ore Export Restrictions to Europe Under Jokowi's Administration 2022

  • Sophiana Widiastutie;Dairatul Maarif;Adinda Aulia Hafizha
    • Asia pacific journal of information systems
    • /
    • 제34권2호
    • /
    • pp.400-420
    • /
    • 2024
  • Nowadays, social media has evolved into a powerful networked ecosystem in which governments and citizens publicly debate economic and political issues. This holds true for the pros and cons of Indonesia's ore nickel export restriction to Europe, which we aim to investigate further in this paper. Using Twitter as a dependable channel for conducting sentiment analysis, we have gathered 7070 tweets data for further processing using two sentiment analysis approaches, namely Support Vector Machine (SVM) and Long Short Term Memory (LSTM). Model construction stage has shown that Bidirectional LSTM performed better than LSTM and SVM kernels, with accuracy of 91%. The LSTM comes second and The SVM Radial Basis Function comes third in terms of best model, with 88% and 83% accuracies, respectively. In terms of sentiments, most Indonesians believe that the nickel ore provision will have a positive impact on the mining industry in Indonesia. However, a small number of Indonesian citizens contradict this policy due to fears of a trade dispute that could potentially harm Indonesia's bilateral relations with the EU. Hence, this study contributes to the advancement of measuring public opinions through big data tools by identifying Bidirectional LSTM as the optimal model for the dataset.

FORECASTING GOLD FUTURES PRICES CONSIDERING THE BENCHMARK INTEREST RATES

  • Lee, Donghui;Kim, Donghyun;Yoon, Ji-Hun
    • 충청수학회지
    • /
    • 제34권2호
    • /
    • pp.157-168
    • /
    • 2021
  • This study uses the benchmark interest rate of the Federal Open Market Committee (FOMC) to predict gold futures prices. For the predictions, we used the support vector machine (SVM) (a machine-learning model) and the long short-term memory (LSTM) deep-learning model. We found that the LSTM method is more accurate than the SVM method. Moreover, we applied the Boruta algorithm to demonstrate that the FOMC benchmark interest rates correlate with gold futures.

Political Opinion Mining from Article Comments using Deep Learning

  • Sung, Dae-Kyung;Jeong, Young-Seob
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권1호
    • /
    • pp.9-15
    • /
    • 2018
  • Policy polls, which investigate the degree of support that the policy has for policy implementation, play an important role in making decisions. As the number of Internet users increases, the public is actively commenting on their policy news stories. Current policy polls tend to rely heavily on phone and offline surveys. Collecting and analyzing policy articles is useful in policy surveys. In this study, we propose a method of analyzing comments using deep learning technology showing outstanding performance in various fields. In particular, we designed various models based on the recurrent neural network (RNN) which is suitable for sequential data and compared the performance with the support vector machine (SVM), which is a traditional machine learning model. For all test sets, the SVM model show an accuracy of 0.73 and the RNN model have an accuracy of 0.83.

우도비를 이용한 DBN 기반의 음성 검출기 (Voice Activity Detection based on DBN using the Likelihood Ratio)

  • 김상균;이상민
    • 재활복지공학회논문지
    • /
    • 제8권3호
    • /
    • pp.145-150
    • /
    • 2014
  • 본 논문에서는 입력된 신호에 의해 결정되는 각 주파수 밴드별 우도비(likelihood ratio, LR)를 deep belief networks(DBN)의 입력층으로 이용하는 새로운 음성 검출기(voice activity detection, VAD) 알고리즘을 제안한다. 기존의 통계적 모델 기반의 음성 검출기는 음성 구간을 판단하기 위해 우도비를 기하 평균을 이용한 결정식을 사용한다. 제안된 음성 검출기는 이 결정식을 대신해 DBN을 이용하여, 오검출 확률을 최소화 하도록 학습을 한다. 제안된 DBN 기반의 음성 검출 알고리즘은 통계적 모델 기반의 음성 검출기의 성능을 개선한 support vector machine(SVM) 기반의 음성 검출기와 정상 및 비정상 잡음 환경에서 다양한 조건을 부과하여 비교하였다. 제안된 알고리즘이 기존의 SVM 기반의 알고리즘보다 전체 오분류 확률 [0.7, 2.7]의 향상 폭을 보였다.

  • PDF