• 제목/요약/키워드: Deep Neural Network Model

검색결과 1,188건 처리시간 0.032초

반려동물 모니터링을 위한 YOLO 기반의 이동식 시스템 설계 (Design of YOLO-based Removable System for Pet Monitoring)

  • 이민혜;강준영;임순자
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.22-27
    • /
    • 2020
  • 최근 1인 가구의 증가로 반려동물을 키우는 가구가 많아짐에 따라, 주인의 부재 시에도 반려동물의 상태나 행동을 모니터링하는 시스템에 대한 필요성이 요구되고 있다. 가정용 CCTV를 이용한 반려동물의 모니터링에는 지역적 한계가 있어, 다수의 CCTV를 필요로 하거나 반려동물의 행동반경을 제한하는 방법을 사용하게 된다. 본 논문에서는 반려동물 모니터링의 지역적 한계를 해결하고자 딥러닝을 이용하여 고양이를 검출하고 추적하는 이동식 시스템을 제안한다. 객체 검출 신경망 모델의 하나인 YOLO(You Look Only Once)를 이용하여 데이터셋을 학습하고, 이를 기반으로 라즈베리파이에 적용하여 영상에서 검출된 객체를 추적한다. 라즈베리파이와 노트북을 무선 랜으로 연결하고 고양이의 움직임과 상태를 실시간으로 확인이 가능한 이동식 모니터링 시스템을 설계하였다.

소규모 합성곱 신경망을 사용한 연령 및 성별 분류 (Age and Gender Classification with Small Scale CNN)

  • ;류재흥
    • 한국전자통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.99-104
    • /
    • 2022
  • 인공지능은 놀라운 이점으로 우리 삶의 중요한 부분을 차지하고 있다. 기계는 이미지에서 물체를 인식하는 것, 특히 사람들을 정확한 나이와 성별 그룹으로 분류하는 것에 있어서 인간을 능가하고 있다. 이러한 측면에서 나이와 성별 분류는 최근 수십 년 동안 컴퓨터 비전 연구자들 사이에서 뜨거운 주제 중 하나였다. 심층 합성곱 신경망(CNN) 모델의 배포는 최첨단 성능을 달성했다. 그러나 대부분의 CNN 기반 아키텍처는 수십 개의 훈련 매개 변수로 매우 복잡하기 때문에 많은 계산 시간과 자원이 필요하다. 이러한 이유로 기존 방법에 비해 훈련 매개 변수와 훈련 시간이 현저히 적은 새로운 CNN기반 분류 알고리즘을 제안한다. 덜 복잡함에도 불구하고 우리 모델은 UTKFace 데이터 세트에서 연령 및 성별 분류의 더 나은 정확도를 보여준다.

대수용가 스마트미터와 수압 데이터를 이용한 소블록 내 관 파손사고 감지모델 개발 (Development of a pipe burst detection model using large consumer's smart water meter and pressure data)

  • 김경필;유완식;강신욱;최두용
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.521-521
    • /
    • 2023
  • 지방상수도의 관 파손사고 감지 및 누수관리 방법에는 블록시스템 구축을 통한 소블록별 야간최소유량 감시방법이 가장 대표적이다. 야간최소유량은 새벽 2시와 4시 사이의 인구 활동 비율이 가장 낮은 새벽 시간대에 소블록에 공급된 유량을 의미하며, 대부분 유량 성분은 누수량일 것이라는 가정에서 출발한다. 그러나 아파트 중심의 주거 형태를 보이는 도심지의 경우, 새벽 시간대에도 다량의 물수요가 비정기적으로 발생하고 있어 관망의 이상 여부를 감시하기 위한 관리기준으로서 야간최소유량을 이용하기에는 높은 일간 변동성에 따른 한계가 있다고 할 수 있다. 즉, 야간최소유량은 관 파손사고 발생의 감시보다는 관로 연결 또는 급수전 분기 부위에서 발생하는 미량의 누수가 수개월에 걸쳐 누적되는 장기추세를 분석하여 누수탐사반의 투입 시점을 결정하기 위한 근거를 제시하기 위한 목적으로 사용되며, 아직까지 관 파손사고의 발생은 자체적인 감지보다는 민원에 의해 인지되는 경우가 많다. 최근, 스마트관망 구축사업(SWM) 등을 통해 관 파손 및 누수 감지를 위한 청음식 누수감지센서가 소블록 내 도입되고 있으나, 초기 시설투자에 큰 비용이 수반되며 주변 소음과 배터리 전원방식의 한계로 인하여 새벽 시간대에만 분석이 제한적으로 적용되는 경우가 많아 이 역시도 상시적인 관 파손사고의 감시기술이라 보기는 어렵다. 본 연구에서는 소블록 유입점에서의 유량·압력과 소블록 내에 설치된 대수용가 스마트미터, 그리고 사고감지를 위한 수압계 사이의 평상시 수리적 균형을 학습한 DNN(Deep Neural Network) 모델을 이용하여 관 파손사고를 실시간 감지하는 모델 개발연구를 수행하였다. 모델은 관 파손사고 감지를 위한 수압계의 최적 위치와 대수를 결정하기 위한 모듈과 관 파손사고 감지모듈로 구성되며, 1개 소블록 Test-Bed를 구축하여 모델을 생성하고 PDD 관망해석 모델을 통해 생성된 가상의 사고에 대한 감지 여부로서 개발 모델의 감지성능을 평가하였다.

  • PDF

딥러닝을 이용한 벼 도복 면적 추정 (Estimation of the Lodging Area in Rice Using Deep Learning)

  • 반호영;백재경;상완규;김준환;서명철
    • 한국작물학회지
    • /
    • 제66권2호
    • /
    • pp.105-111
    • /
    • 2021
  • 해마다, 강한 바람을 동반한 태풍 및 집중호우로 인해 벼도복이 발생하고 있으며, 이삭이 여무는 등숙기에 도복으로 인한 수발아와 관련된 피해를 발생시키고 있다. 따라서,신속한 피해 대응을 위해 신속한 벼 도복 피해 면적 산정은 필수적이다. 벼 도복과 관련된 이미지들은 도복이 발생된 김제, 부안, 군산일대에서 드론을 이용하여 수집하였고, 수집한 이미지들을 128 × 128 픽셀로 분할하였다. 벼 도복을 예측하기 위해 이미지 기반 딥 러닝 모델인 CNN을 이용하였다. 분할한 이미지들은 도복 이미지(lodging)와 정상 이미지(non-lodging) 2가지로 라벨로 분류하였고, 자료들은 학습을 위한 training-set과 검증을 위한 vali-se을 8:2의 비율로 구분하였다. CNN의 층을 간단하게 구성하여, 3개의 optimizer (Adam, Rmsprop, and SGD)로 모델을 학습하였다. 벼 도복 면적 평가는 training-set과 vali-set에 포함되지 않은 자료를 이용하였으며, 이미지들을 methshape 프로그램으로 전체 농지로 결합하여 총 3개의 농지를 평가하였다. 도복 면적 추정은 필지 전체의 이미지를 모델의 학습 입력 크기(128 × 128)로 분할하여 학습된 CNN 모델로 각각 예측한 후, 전체 분할 이미지 개수 대비 도복 이미지 개수의 비율을 전체 농지의 면적에 곱하여 산정하였다. training-set과 vali-set에 대한 학습 결과, 3개의 optimizer 모두 학습이 진행됨에 따라 정확도가 높아졌으며, 0.919 이상의 높은 정확도를 보였다. 평가를 위한 3개의 농지에 대한 결과는 모든 optimizer에서 높은 정확도를 보였으며, Adam이 가장 높은 정확도를 보였다(RMSE: 52.80 m2, NRMSE: 2.73%). 따라서 딥 러닝을 이용하여 신속하게 벼 도복 면적을 추정할 수 있을 것으로 예상된다.

멀티 모달리티 데이터 활용을 통한 골다공증 단계 다중 분류 시스템 개발: 합성곱 신경망 기반의 딥러닝 적용 (Multi-classification of Osteoporosis Grading Stages Using Abdominal Computed Tomography with Clinical Variables : Application of Deep Learning with a Convolutional Neural Network)

  • 하태준;김희상;강성욱;이두희;김우진;문기원;최현수;김정현;김윤;박소현;박상원
    • 한국방사선학회논문지
    • /
    • 제18권3호
    • /
    • pp.187-201
    • /
    • 2024
  • 골다공증은 전 세계적으로 주요한 건강 문제임에도 불구하고, 골절 발생 전까지 쉽게 발견되지 않는 단점을 가지고 있습니다. 본 연구에서는 골다공증 조기 발견 능력 향상을 위해, 복부 컴퓨터 단층 촬영(Computed Tomography, CT) 영상을 활용하여 정상-골감소증-골다공증으로 구분되는 골다공증 단계를 체계적으로 분류할 수 있는 딥러닝(Deep learning, DL) 시스템을 개발하였습니다. 총 3,012개의 조영제 향상 복부 CT 영상과 개별 환자의 이중 에너지 X선 흡수 계측법(Dual-Energy X-ray Absorptiometry, DXA)으로 얻은 T-점수를 활용하여 딥러닝 모델 개발을 수행하였습니다. 모든 딥러닝 모델은 비정형 이미지 데이터, 정형 인구 통계 정보 및 비정형 영상 데이터와 정형 데이터를 동시에 활용하는 다중 모달 방법에 각각 모델 구현을 실현하였으며, 모든 환자들은 T-점수를 통해 정상, 골감소증 및 골다공증 그룹으로 분류되었습니다. 가장 높은 정확도를 갖는 모델 우수성은 비정형-정형 결합 데이터 모델이 가장 우수하였으며, 수신자 조작 특성 곡선 아래 면적이 0.94와 정확도가 0.80를 제시하였습니다. 구현된 딥러닝 모델은 그라디언트 가중치 클래스 활성화 매핑(Gradient-weighted Class Activation Mapping, Grad-CAM)을 통해 해석되어 이미지 내에서 임상적으로 관련된 특징을 강조했고, 대퇴 경부가 골다공증을 통해 골절 발생이 높은 위험 부위임을 밝혔습니다. 이 연구는 DL이 임상 데이터에서 골다공증 단계를 정확하게 식별할 수 있음을 보여주며, 조기에 골다공증을 탐지하고 적절한 치료로 골절 위험을 줄일 수 있는 복부 컴퓨터 단층 촬영 영상의 잠재력을 제시할 수 있습니다.

가시설 벽체(C.I.P.)의 굴착중 안정성 평가 알고리즘 개발 (Development of Stability Evaluation Algorithm for C.I.P. Retaining Walls During Excavation)

  • 이동건;유정연;최지열;송기일
    • 한국지반공학회논문집
    • /
    • 제39권9호
    • /
    • pp.13-24
    • /
    • 2023
  • 가시설 흙막이의 굴착중 안정성 분석에 대한 연구를 위해서는 지반의 정확한 물성을 평가할 수 있는 역해석 기술과 실시간으로 계측되는 데이터를 분석하여 안정성을 평가할 수 있는 학습모델의 개발이 필요하다. 본 연구에서는 CIP공법이 적용된 굴착 현장을 대상으로 차분진화 알고리즘을 통해 굴착 중인 지반의 물성치를 추정하고, 벽체의 안정성을 평가할 수 있는 DNN 모델을 개발하였다. 차분진화 알고리즘의 적용성 분석을 위하여 2층 지반으로 구성된 모델에 대한 역해석을 수행하였고, 역해석 결과 지반의 탄성계수, 점착력, 내부마찰각을 97%의 정확도로 예측할 수 있는 것으로 분석되었다. DNN 모델의 학습데이터 구축을 위하여 30,000개의 케이스에 대하여 해석을 수행하였다. 앵커축력, 부등침하, 벽체 변위, 벽체 구조적 안정성 등 각각의 평가요소에 대한 안정성 평가 등급을 제시하였고, 그에 따라 데이터를 학습하였다. 학습된 DNN 모델의 적용성 분석 결과, 앵커의 축력, 부등침하, 벽체의 변위, 벽체의 구조 안정성에 대해 평균 94% 이상으로 벽체의 안정성을 예측할 수 있는 것으로 평가되었다.

기계학습법을 통한 압축 벤토나이트의 열전도도 추정 모델 평가 (Evaluation of a Thermal Conductivity Prediction Model for Compacted Clay Based on a Machine Learning Method)

  • 윤석;방현태;김건영;전해민
    • 대한토목학회논문집
    • /
    • 제41권2호
    • /
    • pp.123-131
    • /
    • 2021
  • 완충재는 고준위 방사성 폐기물을 처분하기 위한 공학적 방벽 시스템에서 중요한 구성요소 중 하나이며 사용 후 핵연료가 담긴 처분용기와 암반사이에 채워지는 물질이기 때문에 지하수 유입으로부터 처분용기를 보호하고, 방사성 핵종 유출을 저지하는 중요한 역할을 수행한다. 따라서 공학적 방벽 시스템의 처분용기로부터 발생하는 고온의 열량은 완충재를 통하여 전파되기에 완충재의 열전도도는 처분시스템의 안전성 평가에 매우 중요하다. 본 연구에서는 국내에서 생산되는 압축 벤토나이트 완충재의 열전도도 예측을 위한 경험적 회귀 모델의 정합성을 검증하고 정확도를 높이기 위해 예측모델의 구축에 기계학습법을 적용해 보았다. 벤토나이트의 건조밀도, 함수비 및 온도 값을 바탕으로 열전도도를 예측하고자 하였으며, 이때 다항 회귀, 결정 트리, 서포트 벡터 머신, 앙상블, 가우시안 프로세스 회귀, 인공신경망, 심층 신뢰 신경망, 유전 프로그래밍과 같은 기계학습 기법을 적용하였다. 기계학습 기법을 이용하여 예측한 결과, 부스팅 기반의 앙상블 기법, 유전 프로그래밍, 3차 함수 기반의 SVM, 가우시안 프로세스 회귀의 기계학습기법을 활용한 모델이 선형 회귀 분석 기법에 비해 좋은 성능을 보였으며, 특히 앙상블의 부스팅 기법과 가우시안 프로세스 회귀 기법을 사용한 모델들이 가장 좋은 성능을 보였다.

강수-일유출량 추정 LSTM 모형의 구축을 위한 자료 수집 방안 (Data collection strategy for building rainfall-runoff LSTM model predicting daily runoff)

  • 김동균;강석구
    • 한국수자원학회논문집
    • /
    • 제54권10호
    • /
    • pp.795-805
    • /
    • 2021
  • 본 연구는 소양강댐 유역을 대상으로 LSTM 기반의 일유출량 추정 딥러닝 모형을 개발한 후, 모형구조 및 입력자료의 다양한 조합에 대한 모형의 정확도를 살폈다. 첫 12년(1997.1.1-2008.12.31) 동안의 유역평균 일강수량, 일기온, 일풍속 (이상 입력), 일평균 유량 (출력)으로 이루어진 데이터베이스를 기반으로 모형을 구축하였으며, 이후 12년(2009.1.1-2020.12.31) 동안의 자료를 사용하여 Nash-Sutcliffe Model Efficiency Coefficient (NSE)와 RMSE를 살폈다. 가장 높은 정확도를 보인 조합은 64개의 은닉유닛을 가진 LSTM 모형 구조에 가능한 모든 입력자료(12년치의 일강수량, 일기온, 일풍속)를 활용한 경우로서 검증기간의 NSE와 RMSE는 각각 0.862와 76.8 m3/s를 기록하였다. LSTM의 은닉유닛이500개를 초과하는 경우 과적합으로 인한 모형의 성능 저하가 나타나기 시작했으며, 1000개를 초과하는 경우 과적합 문제가 두드러졌다. 12년치의 일강수만 입력자료로 활용한 경우에도 매우 높은 성능(NSE=0.8~0.84)의 모형이 구축되었으며, 한 해의 자료만을 활용하여 학습한 경우에도 충분히 활용 가능한 정확도(NSE=0.63~0.85)를 가진 모형을 구축할 수 있었다. 특히 유량의 변동성이 큰 한 해의 자료만을 활용하여 모형을 학습한 경우 매우 높은 정확도(NSE=0.85)의 모형이 구축되었다. 학습자료가 중유량과 양극한의 유량을 모두 포함한 경우라면 5년 이상의 입력자료는 모형의 성능을 크게 개선시키지 못했다.

기계학습을 활용한 오리사 바닥재 수분 발생량 분석 (Estimation of Duck House Litter Evaporation Rate Using Machine Learning)

  • 김다인;이인복;여욱현;이상연;박세준;크리스티나;김준규;최영배;조정화;정효혁;강솔뫼
    • 한국농공학회논문집
    • /
    • 제63권6호
    • /
    • pp.77-88
    • /
    • 2021
  • Duck industry had a rapid growth in recent years. Nevertheless, researches to improve duck house environment are still not sufficient enough. Moisture generation of duck house litter is an important factor because it may cause severe illness and low productivity. However, the measuring process is difficult because it could be disturbed with animal excrements and other factors. Therefore, it has to be calculated according to the environmental data around the duck house litter. To cut through all these procedures, we built several machine learning regression model forecasting moisture generation of litter by measured environment data (air temperature, relative humidity, wind velocity and water contents). 5 models (Multi Linear Regression, k-Nearest Neighbors, Support Vector Regression, Random Forest and Deep Neural Network). have been selected for regression. By using R-Square, RMSE and MAE as evaluation metrics, the best accurate model was estimated according to the variables for each machine learning model. In addition, to address the small amount of data acquired through lab experiments, bootstrapping method, a technique utilized in statistics, was used. As a result, the most accurate model selected was Random Forest, with parameters of n-estimator 200 by bootstrapping the original data nine times.

CNN을 활용한 새싹삼의 품질 예측 모델 개발 (A Quality Prediction Model for Ginseng Sprouts based on CNN)

  • 이충구;정석봉
    • 한국시뮬레이션학회논문지
    • /
    • 제30권2호
    • /
    • pp.41-48
    • /
    • 2021
  • 농촌 인구의 감소와 고령화가 지속되면서 농업 생상성 향상의 중요성이 높아지고 있는 가운데, 농작물 품질에 대한 조기 예측은 농업 생산성 및 수익성 향상에 중요한 역할을 할 수 있다. 최근 CNN 기반의 딥러닝 기술 및 전이 학습을 활용하여 농작물의 질병을 분류하거나 수확량을 예측하는 연구가 활발하게 진행되고 있지만, 수확 후 농작물의 품질을 식재단계에서 조기에 예측하는 연구는 찾아보기 힘들다. 본 연구에서는 건강 기능성 식품으로 주목받고 있는 새싹삼을 대상으로, 수확 후 새싹삼의 품질을 식재단계에서 조기에 예측하는 모델을 제안한다. 이를 위하여 묘삼의 이미지를 촬영한 후 수경재배를 통해 새싹삼을 재배하였고, 수확 후 새싹삼의 품질을 분류하여 실험 데이터를 수집하였다. 다수의 CNN 기반의 사전 학습된 모델을 활용하여 새싹삼 조기 품질 예측 모델을 구축하고, 수집된 데이터를 이용하여 각 모델의 학습 및 예측 성능을 비교 분석하였다. 분석 결과 모든 예측 모델에서 80% 이상의 예측 정확도를 보였으며, 특히 ResNet152V2 기반의 예측 모델에서 가장 높은 정확도를 보였다. 본 연구를 통해 인력에 의존하던 기존의 묘삼 선별 작업을 자동화하여 새싹삼의 품질을 높이고 생산량을 증대시켜 농가의 수익창출에 기여할 수 있을 것으로 기대된다.