• Title/Summary/Keyword: Deep Neural Network Model

Search Result 1,188, Processing Time 0.03 seconds

Improving Non-Profiled Side-Channel Analysis Using Auto-Encoder Based Noise Reduction Preprocessing (비프로파일링 기반 전력 분석의 성능 향상을 위한 오토인코더 기반 잡음 제거 기술)

  • Kwon, Donggeun;Jin, Sunghyun;Kim, HeeSeok;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.491-501
    • /
    • 2019
  • In side-channel analysis, which exploit physical leakage from a cryptographic device, deep learning based attack has been significantly interested in recent years. However, most of the state-of-the-art methods have been focused on classifying side-channel information in a profiled scenario where attackers can obtain label of training data. In this paper, we propose a new method based on deep learning to improve non-profiling side-channel attack such as Differential Power Analysis and Correlation Power Analysis. The proposed method is a signal preprocessing technique that reduces the noise in a trace by modifying Auto-Encoder framework to the context of side-channel analysis. Previous work on Denoising Auto-Encoder was trained through randomly added noise by an attacker. In this paper, the proposed model trains Auto-Encoder through the noise from real data using the noise-reduced-label. Also, the proposed method permits to perform non-profiled attack by training only a single neural network. We validate the performance of the noise reduction of the proposed method on real traces collected from ChipWhisperer board. We demonstrate that the proposed method outperforms classic preprocessing methods such as Principal Component Analysis and Linear Discriminant Analysis.

CycleGAN Based Translation Method between Asphalt and Concrete Crack Images for Data Augmentation (데이터 증강을 위한 순환 생성적 적대 신경망 기반의 아스팔트와 콘크리트 균열 영상 간의 변환 기법)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.171-182
    • /
    • 2022
  • The safe use of a structure requires it to be maintained in an undamaged state. Thus, a typical factor that determines the safety of a structure is a crack in it. In addition, cracks are caused by various reasons, damage the structure in various ways, and exist in different shapes. Making matters worse, if these cracks are unattended, the risk of structural failure increases and proceeds to a catastrophe. Hence, recently, methods of checking structural damage using deep learning and computer vision technology have been introduced. These methods usually have the premise that there should be a large amount of training image data. However, the amount of training image data is always insufficient. Particularly, this insufficiency negatively affects the performance of deep learning crack detection algorithms. Hence, in this study, a method of augmenting crack image data based on the image translation technique was developed. In particular, this method obtained the crack image data for training a deep learning neural network model by transforming a specific case of a asphalt crack image into a concrete crack image or vice versa . Eventually, this method expected that a robust crack detection algorithm could be developed by increasing the diversity of its training data.

The Study on The Identification Model of Friend or Foe on Helicopter by using Binary Classification with CNN

  • Kim, Tae Wan;Kim, Jong Hwan;Moon, Ho Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.33-42
    • /
    • 2020
  • There has been difficulties in identifying objects by relying on the naked eye in various surveillance systems. There is a growing need for automated surveillance systems to replace soldiers in the field of military surveillance operations. Even though the object detection technology is developing rapidly in the civilian domain, but the research applied to the military is insufficient due to a lack of data and interest. Thus, in this paper, we applied one of deep learning algorithms, Convolutional Neural Network-based binary classification to develop an autonomous identification model of both friend and foe helicopters (AH-64, Mi-17) among the military weapon systems, and evaluated the model performance by considering accuracy, precision, recall and F-measure. As the result, the identification model demonstrates 97.8%, 97.3%, 98.5%, and 97.8 for accuracy, precision, recall and F-measure, respectively. In addition, we analyzed the feature map on convolution layers of the identification model in order to check which area of imagery is highly weighted. In general, rotary shaft of rotating wing, wheels, and air-intake on both of ally and foe helicopters played a major role in the performance of the identification model. This is the first study to attempt to classify images of helicopters among military weapons systems using CNN, and the model proposed in this study shows higher accuracy than the existing classification model for other weapons systems.

A Study on the stock price prediction and influence factors through NARX neural network optimization (NARX 신경망 최적화를 통한 주가 예측 및 영향 요인에 관한 연구)

  • Cheon, Min Jong;Lee, Ook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.572-578
    • /
    • 2020
  • The stock market is affected by unexpected factors, such as politics, society, and natural disasters, as well as by corporate performance and economic conditions. In recent days, artificial intelligence has become popular, and many researchers have tried to conduct experiments with that. Our study proposes an experiment using not only stock-related data but also other various economic data. We acquired a year's worth of data on stock prices, the percentage of foreigners, interest rates, and exchange rates, and combined them in various ways. Thus, our input data became diversified, and we put the combined input data into a nonlinear autoregressive network with exogenous inputs (NARX) model. With the input data in the NARX model, we analyze and compare them to the original data. As a result, the model exhibits a root mean square error (RMSE) of 0.08 as being the most accurate when we set 10 neurons and two delays with a combination of stock prices and exchange rates from the U.S., China, Europe, and Japan. This study is meaningful in that the exchange rate has the greatest influence on stock prices, lowering the error from RMSE 0.589 when only closing data are used.

Water Segmentation Based on Morphologic and Edge-enhanced U-Net Using Sentinel-1 SAR Images (형태학적 연산과 경계추출 학습이 강화된 U-Net을 활용한 Sentinel-1 영상 기반 수체탐지)

  • Kim, Hwisong;Kim, Duk-jin;Kim, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.793-810
    • /
    • 2022
  • Synthetic Aperture Radar (SAR) is considered to be suitable for near real-time inundation monitoring. The distinctly different intensity between water and land makes it adequate for waterbody detection, but the intrinsic speckle noise and variable intensity of SAR images decrease the accuracy of waterbody detection. In this study, we suggest two modules, named 'morphology module' and 'edge-enhanced module', which are the combinations of pooling layers and convolutional layers, improving the accuracy of waterbody detection. The morphology module is composed of min-pooling layers and max-pooling layers, which shows the effect of morphological transformation. The edge-enhanced module is composed of convolution layers, which has the fixed weights of the traditional edge detection algorithm. After comparing the accuracy of various versions of each module for U-Net, we found that the optimal combination is the case that the morphology module of min-pooling and successive layers of min-pooling and max-pooling, and the edge-enhanced module of Scharr filter were the inputs of conv9. This morphologic and edge-enhanced U-Net improved the F1-score by 9.81% than the original U-Net. Qualitative inspection showed that our model has capability of detecting small-sized waterbody and detailed edge of water, which are the distinct advancement of the model presented in this research, compared to the original U-Net.

Automated Vehicle Research by Recognizing Maneuvering Modes using LSTM Model (LSTM 모델 기반 주행 모드 인식을 통한 자율 주행에 관한 연구)

  • Kim, Eunhui;Oh, Alice
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.153-163
    • /
    • 2017
  • This research is based on the previous research that personally preferred safe distance, rotating angle and speed are differentiated. Thus, we use machine learning model for recognizing maneuvering modes trained per personal or per similar driving pattern groups, and we evaluate automatic driving according to maneuvering modes. By utilizing driving knowledge, we subdivided 8 kinds of longitudinal modes and 4 kinds of lateral modes, and by combining the longitudinal and lateral modes, we build 21 kinds of maneuvering modes. we train the labeled data set per time stamp through RNN, LSTM and Bi-LSTM models by the trips of drivers, which are supervised deep learning models, and evaluate the maneuvering modes of automatic driving for the test data set. The evaluation dataset is aggregated of living trips of 3,000 populations by VTTI in USA for 3 years and we use 1500 trips of 22 people and training, validation and test dataset ratio is 80%, 10% and 10%, respectively. For recognizing longitudinal 8 kinds of maneuvering modes, RNN achieves better accuracy compared to LSTM, Bi-LSTM. However, Bi-LSTM improves the accuracy in recognizing 21 kinds of longitudinal and lateral maneuvering modes in comparison with RNN and LSTM as 1.54% and 0.47%, respectively.

Financial Products Recommendation System Using Customer Behavior Information (고객의 투자상품 선호도를 활용한 금융상품 추천시스템 개발)

  • Hyojoong Kim;SeongBeom Kim;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.111-128
    • /
    • 2023
  • With the development of artificial intelligence technology, interest in data-based product preference estimation and personalized recommender systems is increasing. However, if the recommendation is not suitable, there is a risk that it may reduce the purchase intention of the customer and even extend to a huge financial loss due to the characteristics of the financial product. Therefore, developing a recommender system that comprehensively reflects customer characteristics and product preferences is very important for business performance creation and response to compliance issues. In the case of financial products, product preference is clearly divided according to individual investment propensity and risk aversion, so it is necessary to provide customized recommendation service by utilizing accumulated customer data. In addition to using these customer behavioral characteristics and transaction history data, we intend to solve the cold-start problem of the recommender system, including customer demographic information, asset information, and stock holding information. Therefore, this study found that the model proposed deep learning-based collaborative filtering by deriving customer latent preferences through characteristic information such as customer investment propensity, transaction history, and financial product information based on customer transaction log records was the best. Based on the customer's financial investment mechanism, this study is meaningful in developing a service that recommends a high-priority group by establishing a recommendation model that derives expected preferences for untraded financial products through financial product transaction data.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Chest CT Image Patch-Based CNN Classification and Visualization for Predicting Recurrence of Non-Small Cell Lung Cancer Patients (비소세포폐암 환자의 재발 예측을 위한 흉부 CT 영상 패치 기반 CNN 분류 및 시각화)

  • Ma, Serie;Ahn, Gahee;Hong, Helen
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Non-small cell lung cancer (NSCLC) accounts for a high proportion of 85% among all lung cancer and has a significantly higher mortality rate (22.7%) compared to other cancers. Therefore, it is very important to predict the prognosis after surgery in patients with non-small cell lung cancer. In this study, the types of preoperative chest CT image patches for non-small cell lung cancer patients with tumor as a region of interest are diversified into five types according to tumor-related information, and performance of single classifier model, ensemble classifier model with soft-voting method, and ensemble classifier model using 3 input channels for combination of three different patches using pre-trained ResNet and EfficientNet CNN networks are analyzed through misclassification cases and Grad-CAM visualization. As a result of the experiment, the ResNet152 single model and the EfficientNet-b7 single model trained on the peritumoral patch showed accuracy of 87.93% and 81.03%, respectively. In addition, ResNet152 ensemble model using the image, peritumoral, and shape-focused intratumoral patches which were placed in each input channels showed stable performance with an accuracy of 87.93%. Also, EfficientNet-b7 ensemble classifier model with soft-voting method using the image and peritumoral patches showed accuracy of 84.48%.

Battery-loaded power management algorithm of electric propulsion ship based on power load and state learning model (전력 부하와 학습모델 기반의 전기추진선박의 배터리 연동 전력관리 알고리즘)

  • Oh, Ji-hyun;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1202-1208
    • /
    • 2020
  • In line with the current era of the 4th Industrial Revolution, it is necessary to prepare for the future by integrating AI elements in the ship sector. In addition, it is necessary to respond to this in the field of power management for the appearance of autonomous ships. In this study, we propose a battery-linked electric propulsion system (BLEPS) algorithm using machine learning's DNN. For the experiment, we learned the pattern of ship power consumption for each operation mode based on the ship data through LabView and derived the battery status through Python to check the flexibility of the generator and battery interlocking. As a result of the experiment, the low load operation of the generator was reduced through charging and discharging of the battery, and economic efficiency and reliability were confirmed by reducing the fuel consumption of 1% of LNG.