• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.031 seconds

System Dynamics Approaches on Green Car Diffusion Strategies and the Causal Diagram Analysis (친환경차 확산전략에 대한 시스템다이내믹스 접근과 인과지도 분석)

  • Park, Kyungbae
    • Korean System Dynamics Review
    • /
    • v.13 no.4
    • /
    • pp.33-55
    • /
    • 2012
  • The research is to identify important diffusion factors and their effects on green car diffusion process using system dynamics perspectives and a causal-loop analysis. Through a deep review on previous research, we have found the important factors of green car diffusion process. Price, driving range, network effect, recharge system, fuel cost had important facilitation on consumer attraction and green car diffusion. Based on the review, we have constructed a causal loop diagram explaining hybrid car diffusion process. We have found 3 important reinforcing loops in the causal loop diagram. Loop for learning & economies of scale(supply side), loop for network effect(consumer side), and loop for battery development(technology side) had most significant roles in the whole diffusion process. Through a deliberate analysis on the 3 causal loops, we have found meaningful results. First, there seems to exist a critical mass in the diffusion. Second, of the 3 loops, the battery technology had most significant role. Third, not consumer installed base but sales must be a standard to decide whether the critical mass is achieved or not. Based on these findings, several meaningful implications are suggested for the government and corporations related to the green car industries.

  • PDF

Deep Learning Based Prediction Method of Long-term Photovoltaic Power Generation Using Meteorological and Seasonal Information (기후 및 계절정보를 이용한 딥러닝 기반의 장기간 태양광 발전량 예측 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • Recently, since responding to meteorological changes depending on increasing greenhouse gas and electricity demand, the importance prediction of photovoltaic power (PV) is rapidly increasing. In particular, the prediction of PV power generation may help to determine a reasonable price of electricity, and solve the problem addressed such as a system stability and electricity production balance. However, since the dynamic changes of meteorological values such as solar radiation, cloudiness, and temperature, and seasonal changes, the accurate long-term PV power prediction is significantly challenging. Therefore, in this paper, we propose PV power prediction model based on deep learning that can be improved the PV power prediction performance by learning to use meteorological and seasonal information. We evaluate the performances using the proposed model compared to seasonal ARIMA (S-ARIMA) model, which is one of the typical time series methods, and ANN model, which is one hidden layer. As the experiment results using real-world dataset, the proposed model shows the best performance. It means that the proposed model shows positive impact on improving the PV power forecast performance.

End to End Autonomous Driving System using Out-layer Removal (Out-layer를 제거한 End to End 자율주행 시스템)

  • Seung-Hyeok Jeong;Dong-Ho Yun;Sung-Hun Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.65-70
    • /
    • 2023
  • In this paper, we propose an autonomous driving system using an end-to-end model to improve lane departure and misrecognition of traffic lights in a vision sensor-based system. End-to-end learning can be extended to a variety of environmental conditions. Driving data is collected using a model car based on a vision sensor. Using the collected data, it is composed of existing data and data with outlayers removed. A class was formed with camera image data as input data and speed and steering data as output data, and data learning was performed using an end-to-end model. The reliability of the trained model was verified. Apply the learned end-to-end model to the model car to predict the steering angle with image data. As a result of the learning of the model car, it can be seen that the model with the outlayer removed is improved than the existing model.

Artificial Intelligence-based Security Control Construction and Countermeasures (인공지능기반 보안관제 구축 및 대응 방안)

  • Hong, Jun-Hyeok;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.531-540
    • /
    • 2021
  • As cyber attacks and crimes increase exponentially and hacking attacks become more intelligent and advanced, hacking attack methods and routes are evolving unpredictably and in real time. In order to reinforce the enemy's responsiveness, this study aims to propose a method for developing an artificial intelligence-based security control platform by building a next-generation security system using artificial intelligence to respond by self-learning, monitoring abnormal signs and blocking attacks.The artificial intelligence-based security control platform should be developed as the basis for data collection, data analysis, next-generation security system operation, and security system management. Big data base and control system, data collection step through external threat information, data analysis step of pre-processing and formalizing the collected data to perform positive/false detection and abnormal behavior analysis through deep learning-based algorithm, and analyzed data Through the operation of a security system of prevention, control, response, analysis, and organic circulation structure, the next generation security system to increase the scope and speed of handling new threats and to reinforce the identification of normal and abnormal behaviors, and management of the security threat response system, Harmful IP management, detection policy management, security business legal system management. Through this, we are trying to find a way to comprehensively analyze vast amounts of data and to respond preemptively in a short time.

Improvement of PM Forecasting Performance by Outlier Data Removing (Outlier 데이터 제거를 통한 미세먼지 예보성능의 향상)

  • Jeon, Young Tae;Yu, Suk Hyun;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.747-755
    • /
    • 2020
  • In this paper, we deal with outlier data problems that occur when constructing a PM2.5 fine dust forecasting system using a neural network. In general, when learning a neural network, some of the data are not helpful for learning, but rather disturbing. Those are called outlier data. When they are included in the training data, various problems such as overfitting occur. In building a PM2.5 fine dust concentration forecasting system using neural network, we have found several outlier data in the training data. We, therefore, remove them, and then make learning 3 ways. Over_outlier model removes outlier data that target concentration is low, but the model forecast is high. Under_outlier model removes outliers data that target concentration is high, but the model forecast is low. All_outlier model removes both Over_outlier and Under_outlier data. We compare 3 models with a conventional outlier removal model and non-removal model. Our outlier removal model shows better performance than the others.

Performance Evaluation of Pilotless Channel Estimation with Limited Number of Data Symbols in Frequency Selective Channel

  • Wang, Hanho
    • International Journal of Contents
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2018
  • In a wireless mobile communication system, a pilot signal has been considered to be a necessary signal for estimating a changing channel between a base station and a terminal. All mobile communication systems developed so far have a specification for transmitting pilot signals. However, although the pilot signal transmission is easy to estimate the channel,(Ed: unclear wording: it is easy to use the pilot signal transmission to estimate the channel?) it should be minimized because it uses radio resources for data transmission. In this paper, we propose a pilotless channel estimation scheme (PCE) by introducing the clustering method of unsupervised learning used in our deep learning into channel estimation.(Ed: highlight- unclear) The PCE estimates the channel using only the data symbols without using the pilot signal at all. Also, to apply PCE to a real system, we evaluated the performance of PCE based on the resource block (RB), which is a resource allocation unit used in LTE. According to the results of this study, the PCE always provides a better mean square error (MSE) performance than the least square estimator using pilots, although it does not use the pilot signal at all. The MSE performance of the PCE is affected by the number of data symbols used and the frequency selectivity of the channel. In this paper, we provide simulation results considering various effects(Ed: unclear, clarify).

Research on Intelligent Anomaly Detection System Based on Real-Time Unstructured Object Recognition Technique (실시간 비정형객체 인식 기법 기반 지능형 이상 탐지 시스템에 관한 연구)

  • Lee, Seok Chang;Kim, Young Hyun;Kang, Soo Kyung;Park, Myung Hye
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.546-557
    • /
    • 2022
  • Recently, the demand to interpret image data with artificial intelligence in various fields is rapidly increasing. Object recognition and detection techniques using deep learning are mainly used, and video integration analysis to determine unstructured object recognition is a particularly important problem. In the case of natural disasters or social disasters, there is a limit to the object recognition structure alone because it has an unstructured shape. In this paper, we propose intelligent video integration analysis system that can recognize unstructured objects based on video turning point and object detection. We also introduce a method to apply and evaluate object recognition using virtual augmented images from 2D to 3D through GAN.

Hybrid CNN-SVM Based Seed Purity Identification and Classification System

  • Suganthi, M;Sathiaseelan, J.G.R.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.271-281
    • /
    • 2022
  • Manual seed classification challenges can be overcome using a reliable and autonomous seed purity identification and classification technique. It is a highly practical and commercially important requirement of the agricultural industry. Researchers can create a new data mining method with improved accuracy using current machine learning and artificial intelligence approaches. Seed classification can help with quality making, seed quality controller, and impurity identification. Seeds have traditionally been classified based on characteristics such as colour, shape, and texture. Generally, this is done by experts by visually examining each model, which is a very time-consuming and tedious task. This approach is simple to automate, making seed sorting far more efficient than manually inspecting them. Computer vision technologies based on machine learning (ML), symmetry, and, more specifically, convolutional neural networks (CNNs) have been widely used in related fields, resulting in greater labour efficiency in many cases. To sort a sample of 3000 seeds, KNN, SVM, CNN and CNN-SVM hybrid classification algorithms were used. A model that uses advanced deep learning techniques to categorise some well-known seeds is included in the proposed hybrid system. In most cases, the CNN-SVM model outperformed the comparable SVM and CNN models, demonstrating the effectiveness of utilising CNN-SVM to evaluate data. The findings of this research revealed that CNN-SVM could be used to analyse data with promising results. Future study should look into more seed kinds to expand the use of CNN-SVMs in data processing.

Implementation of a Harmful Bird Repellent System using Directional Speakers

  • Hwa-La Hur;Myeong-Chul Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.97-104
    • /
    • 2023
  • In this paper, we propose a harmful bird repellent system using directional speakers. Existing sound systems for the extermination of harmful birds have the disadvantage of reducing effectiveness due to the learning effect of birds due to problems caused by noise pollution and monotonous sounds. In this paper, directional speakers are used to minimize surrounding noise. In addition, the up-down and left-right angles of the speaker driving device were freely adjusted to maximize usability. Additionally, the problem of performance degradation due to learning effects was solved by using various scanning patterns. In the future, we plan to develop a platform capable of central control by applying remote control functions and a deep learning model that can recognize bird species.

A Novel Fundus Image Reading Tool for Efficient Generation of a Multi-dimensional Categorical Image Database for Machine Learning Algorithm Training

  • Park, Sang Jun;Shin, Joo Young;Kim, Sangkeun;Son, Jaemin;Jung, Kyu-Hwan;Park, Kyu Hyung
    • Journal of Korean Medical Science
    • /
    • v.33 no.43
    • /
    • pp.239.1-239.12
    • /
    • 2018
  • Background: We described a novel multi-step retinal fundus image reading system for providing high-quality large data for machine learning algorithms, and assessed the grader variability in the large-scale dataset generated with this system. Methods: A 5-step retinal fundus image reading tool was developed that rates image quality, presence of abnormality, findings with location information, diagnoses, and clinical significance. Each image was evaluated by 3 different graders. Agreements among graders for each decision were evaluated. Results: The 234,242 readings of 79,458 images were collected from 55 licensed ophthalmologists during 6 months. The 34,364 images were graded as abnormal by at-least one rater. Of these, all three raters agreed in 46.6% in abnormality, while 69.9% of the images were rated as abnormal by two or more raters. Agreement rate of at-least two raters on a certain finding was 26.7%-65.2%, and complete agreement rate of all-three raters was 5.7%-43.3%. As for diagnoses, agreement of at-least two raters was 35.6%-65.6%, and complete agreement rate was 11.0%-40.0%. Agreement of findings and diagnoses were higher when restricted to images with prior complete agreement on abnormality. Retinal/glaucoma specialists showed higher agreements on findings and diagnoses of their corresponding subspecialties. Conclusion: This novel reading tool for retinal fundus images generated a large-scale dataset with high level of information, which can be utilized in future development of machine learning-based algorithms for automated identification of abnormal conditions and clinical decision supporting system. These results emphasize the importance of addressing grader variability in algorithm developments.