KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.8
/
pp.4255-4269
/
2019
This paper proposes an image generation method using a Multi Discriminator Generative Adversarial Net (MDGAN) as a next generation 2D game sprite creation technique. The proposed GAN is an Autoencoder-based model that receives three areas of information-color, shape, and animation, and combines them into new images. This model consists of two encoders that extract color and shape from each image, and a decoder that takes all the values of each encoder and generates an animated image. We also suggest an image processing technique during the learning process to remove the noise of the generated images. The resulting images show that 2D sprites in games can be generated by independently learning the three image attributes of shape, color, and animation. The proposed system can increase the productivity of massive 2D image modification work during the game development process. The experimental results demonstrate that our MDGAN can be used for 2D image sprite generation and modification work with little manual cost.
In recent years, artificial intelligence (AI) services have become one of the most essential parts to extend human capabilities in various fields such as face recognition for security, weather prediction, and so on. Various learning algorithms for existing AI services are utilized, such as classification, regression, and deep learning, to increase accuracy and efficiency for humans. Nonetheless, these services face many challenges such as fake news spread on social media, stock selection, and volatility delay in stock prediction systems and inaccurate movie-based recommendation systems. In this paper, various algorithms are presented to mitigate these issues in different systems and services. Convolutional neural network algorithms are used for detecting fake news in Korean language with a Word-Embedded model. It is based on k-clique and data mining and increased accuracy in personalized recommendation-based services stock selection and volatility delay in stock prediction. Other algorithms like multi-level fusion processing address problems of lack of real-time database.
This study proposes an automated assembly performance evaluation method for prefabricated steel structures (PSSs) using machine learning methods. Assembly component images were segmented using a modified version of the receptive field pyramid. By factorizing channel modulation and the receptive field exploration layers of the convolution pyramid, highly accurate segmentation results were obtained. After completing segmentation, the positions of the bolt holes were calculated using various image processing techniques, such as fuzzy-based edge detection, Hough's line detection, and image perspective transformation. By calculating the distance ratio between bolt holes, the assembly performance of the PSS was estimated using the k-nearest neighbors (kNN) algorithm. The effectiveness of the proposed framework was validated using a 3D PSS printing model and a field test. The results indicated that this approach could recognize assembly components with an intersection over union (IoU) of 95% and evaluate assembly performance with an error of less than 5%.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.421-422
/
2021
국내·외 기업들의 기술을 보호하고자 매년 100만개의 특허가 출원되고 있다. 등록된 특허 수가 증가될수록 전문가의 판단만으로 원하는 기술 분야의 유효한 특허문서를 선별하는 것은 효율적이지 않으며 객관적인 결과를 기대하기 어려워진다. 본 연구에서는 유효 특허문서 분류 정확성과 전문가의 업무 효율성을 제고하고자 비지도학습 모델인 잠재 디리클레 할당 알고리즘(Latent Dirichlet Allocation, LDA)과 딥러닝을 활용하여 자동 특허문서 분류 시스템을 제안하고자 한다.
In recent years, Convolutional Neural Networks (CNNs) have been successfully implemented in different tasks of computer vision. Since CNN models are the representatives of supervised learning algorithms, they demand large amount of data in order to train the classifiers. Thus, obtaining data with correct labels is imperative to attain the state-of-the-art performance of the CNN models. However, labelling datasets is quite tedious and expensive process, therefore real-life datasets often exhibit incorrect labels. Although the issue of poorly labelled datasets has been studied before, we have noticed that the methods are very complex and hard to reproduce. Therefore, in this research work, we propose Deep CleanNet - a considerably simple system that achieves competitive results when compared to the existing methods. We use K-means clustering algorithm for selecting data with correct labels and train the new dataset using a deep CNN model. The technique achieves competitive results in both training and validation stages. We conducted experiments using MNIST database of handwritten digits with 50% corrupted labels and achieved up to 10 and 20% increase in training and validation sets accuracy scores, respectively.
본 연구에서는 머신러닝(Machine Learning, ML)과 딥러닝(Deep Learning, DL) 모델을 앙상블(Ensemble)하여 어떠한 주가 예측 방법이 우수한지에 대한 연구를 하고자 한다. 연구에 사용된 모델은 하이퍼파라미터(Hyperparameter) 조정을 통하여 최적의 결과를 출력한다. 앙상블 방법은 머신러닝과 딥러닝 모델의 앙상블, 머신러닝 모델의 앙상블, 딥러닝 모델의 앙상블이다. 세 가지 방법으로 얻은 결과를 평균 제곱근 오차(Root Mean Squared Error, RMSE)로 비교 분석하여 최적의 방법을 찾고자 한다. 제안한 방법은 주가 예측 연구의 시간과 비용을 절약하고, 최적 성능 모델 판별에 도움이 될 수 있다고 사료된다.
In e-commerce platforms, sentiment analysis on an enormous number of user reviews efficiently enhances user satisfaction. In this article, an automated product recommendation system is developed based on machine and deep-learning models. In the initial step, the text data are acquired from the Amazon Product Reviews dataset, which includes 60 000 customer reviews with 14 806 neutral reviews, 19 567 negative reviews, and 25 627 positive reviews. Further, the text data denoising is carried out using techniques such as stop word removal, stemming, segregation, lemmatization, and tokenization. Removing stop-words (duplicate and inconsistent text) and other denoising techniques improves the classification performance and decreases the training time of the model. Next, vectorization is accomplished utilizing the term frequency-inverse document frequency technique, which converts denoised text to numerical vectors for faster code execution. The obtained feature vectors are given to the modified convolutional neural network model for sentiment analysis on e-commerce platforms. The empirical result shows that the proposed model obtained a mean accuracy of 97.40% on the APR dataset.
A software system is required to change during its life cycle due to various requirements such as adding functionalities, fixing bugs, and adjusting to new computing environments. Such program code modification should be considered as carefully as a new system development becase unexpected software errors could be introduced. In addition, when reusing open source programs, we can expect higher quality software if code changes of the open source program are predicted in advance. This paper proposes a Convolutional Neural Network (CNN)-based deep learning model to predict source code changes. In this paper, the prediction of code changes is considered as a kind of a binary classification problem in deep learning and labeled datasets are used for supervised learning. Java projects and code change logs are collected from GitHub for training and testing datasets. Software metrics are computed from the collected Java source code and they are used as input data for the proposed model to detect code changes. The performance of the proposed model has been measured by using evaluation metrics such as precision, recall, F1-score, and accuracy. The experimental results show the proposed CNN model has achieved 95% in terms of F1-Score and outperformed the multilayer percept-based DNN model whose F1-Score is 92%.
Park, Sungwoo;Jung, Seungmin;Moon, Jaeuk;Hwang, Eenjun
KIPS Transactions on Software and Data Engineering
/
v.11
no.8
/
pp.339-346
/
2022
Recently, the resource depletion and climate change problem caused by the massive usage of fossil fuels for electric power generation has become a critical issue worldwide. According to this issue, interest in renewable energy resources that can replace fossil fuels is increasing. Especially, photovoltaic power has gaining much attention because there is no risk of resource exhaustion compared to other energy resources and there are low restrictions on installation of photovoltaic system. In order to use the power generated by the photovoltaic system efficiently, a more accurate photovoltaic power forecasting model is required. So far, even though many machine learning and deep learning-based photovoltaic power forecasting models have been proposed, they showed limited success in terms of interpretability. Deep learning-based forecasting models have the disadvantage of being difficult to explain how the forecasting results are derived. To solve this problem, many studies are being conducted on explainable artificial intelligence technique. The reliability of the model can be secured if it is possible to interpret how the model derives the results. Also, the model can be improved to increase the forecasting accuracy based on the analysis results. Therefore, in this paper, we propose an explainable photovoltaic power forecasting scheme based on BiLSTM (Bidirectional Long Short-Term Memory) and SHAP (SHapley Additive exPlanations).
Journal of the Korea Society of Computer and Information
/
v.28
no.10
/
pp.27-35
/
2023
In this paper, we propose a process of increasing productivity by applying a deep learning-based defect detection and classification system to the prepreg fiber manufacturing process, which is in high demand in the field of producing composite materials. In order to apply it to toe prepreg manufacturing equipment that requires a solution due to the occurrence of a large amount of defects in various conditions, the optimal environment was first established by selecting cameras and lights necessary for defect detection and classification model production. In addition, data necessary for the production of multiple classification models were collected and labeled according to normal and defective conditions. The multi-classification model is made based on CNN and applies pre-learning models such as VGGNet, MobileNet, ResNet, etc. to compare performance and identify improvement directions with accuracy and loss graphs. Data augmentation and dropout techniques were applied to identify and improve overfitting problems as major problems. In order to evaluate the performance of the model, a performance evaluation was conducted using the confusion matrix as a performance indicator, and the performance of more than 99% was confirmed. In addition, it checks the classification results for images acquired in real time by applying them to the actual process to check whether the discrimination values are accurately derived.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.