• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.038 seconds

Deep Learning Based Error Control in Electric Vehicle Charging Systems Using Power Line Communication (전력선 통신을 이용한 전기자동차 충전 시스템에서 딥 러닝 기반 오류제어)

  • Sun, Young Ghyu;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.150-158
    • /
    • 2018
  • In this paper, we introduce an electric vehicle charging system using power line communication and propose a method to correct the error by applying a deep learning algorithm when an error occurs in the control signal of an electric vehicle charging system using power line communication. The error detection and correction of the control signal can be solved through the conventional error correcting code schemes, but the error is detected and corrected more efficiently by using the deep learning based error correcting code scheme. Therefore, we introduce deep learning based error correction code scheme and apply this scheme to electric vehicle charging system using power line communication. we proceed simulation and confirm performance with bit error rate. we judge whether the deep learning based error correction code scheme is more effective than the conventional schemes.

Design of Deep Learning-based Location information technology for Place image collecting

  • Jang, Jin-wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.31-36
    • /
    • 2020
  • This research study designed a location image collecting technology. It provides the exact location information of an image which is not given in the photo to the user. Deep learning technology analysis and collects the images. The purpose of this service system is to provide the exact place name, location and the various information of the place such as nearby recommended attractions when the user upload the image photo to the service system. Suggested system has a deep learning model that has a size of 25.3MB, and the model repeats the learning process 50 times with a total of 15,266 data, performing 93.75% of the final accuracy. This system can also be linked with various services potentially for further development.

Development of Location Image Analysis System design using Deep Learning

  • Jang, Jin-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.77-82
    • /
    • 2022
  • The research study was conducted for development of the advanced image analysis service system based on deep learning. CNN(Convolutional Neural Network) is built in this system to extract learning data collected from Google and Instagram. The service gets a place image of Jeju as an input and provides relevant location information of it based on its own learning data. Accuracy improvement plans are applied throughout this study. In conclusion, the implemented system shows about 79.2 of prediction accuracy. When the system has plenty of learning data, it is expected to predict various places more accurately.

A Comparison of Deep Reinforcement Learning and Deep learning for Complex Image Analysis

  • Khajuria, Rishi;Quyoom, Abdul;Sarwar, Abid
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The image analysis is an important and predominant task for classifying the different parts of the image. The analysis of complex image analysis like histopathological define a crucial factor in oncology due to its ability to help pathologists for interpretation of images and therefore various feature extraction techniques have been evolved from time to time for such analysis. Although deep reinforcement learning is a new and emerging technique but very less effort has been made to compare the deep learning and deep reinforcement learning for image analysis. The paper highlights how both techniques differ in feature extraction from complex images and discusses the potential pros and cons. The use of Convolution Neural Network (CNN) in image segmentation, detection and diagnosis of tumour, feature extraction is important but there are several challenges that need to be overcome before Deep Learning can be applied to digital pathology. The one being is the availability of sufficient training examples for medical image datasets, feature extraction from whole area of the image, ground truth localized annotations, adversarial effects of input representations and extremely large size of the digital pathological slides (in gigabytes).Even though formulating Histopathological Image Analysis (HIA) as Multi Instance Learning (MIL) problem is a remarkable step where histopathological image is divided into high resolution patches to make predictions for the patch and then combining them for overall slide predictions but it suffers from loss of contextual and spatial information. In such cases the deep reinforcement learning techniques can be used to learn feature from the limited data without losing contextual and spatial information.

Deep-Learning-based Plant Anomaly Detection using a Drone (드론을 이용한 딥러닝 기반 식물 이상 탐지 시스템)

  • Lee, Jeong-Min;Lee, Yeong-Hun;Choi, Nam-Ki;Park, Heemin;Kim, Hyun-Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.94-98
    • /
    • 2021
  • As the world's population grows, the food industry becomes increasingly important. Among them, agriculture is an industry that produces stocks of people all over the world, which is very important food industry. Despite the growing importance of agriculture, however, a large number of crops are lost every year due to pests and malnutrition. So, we propose a plant anomaly detection system for managing crops incorporating deep learning and drones with various possibilities. In this paper, we develop a system that analyzes images taken by drones and GPS of the drone's movement path and visually displays them on a map. Our system detects plant anomalies with 97% accuracy. The system is expected to enable efficient crop management at low cost.

Development of deep autoencoder-based anomaly detection system for HANARO

  • Seunghyoung Ryu;Byoungil Jeon ;Hogeon Seo ;Minwoo Lee;Jin-Won Shin;Yonggyun Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.475-483
    • /
    • 2023
  • The high-flux advanced neutron application reactor (HANARO) is a multi-purpose research reactor at the Korea Atomic Energy Research Institute (KAERI). HANARO has been used in scientific and industrial research and developments. Therefore, stable operation is necessary for national science and industrial prospects. This study proposed an anomaly detection system based on deep learning, that supports the stable operation of HANARO. The proposed system collects multiple sensor data, displays system information, analyzes status, and performs anomaly detection using deep autoencoder. The system comprises communication, visualization, and anomaly-detection modules, and the prototype system is implemented on site in 2021. Finally, an analysis of the historical data and synthetic anomalies was conducted to verify the overall system; simulation results based on the historical data show that 12 cases out of 19 abnormal events can be detected in advance or on time by the deep learning AD model.

Character Level and Word Level English License Plate Recognition Using Deep-learning Neural Networks (딥러닝 신경망을 이용한 문자 및 단어 단위의 영문 차량 번호판 인식)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.19-28
    • /
    • 2020
  • Vehicle license plate recognition system is not generalized in Malaysia due to the loose character layout rule and the varying number of characters as well as the mixed capital English characters and italic English words. Because the italic English word is hard to segmentation, a separate method is required to recognize in Malaysian license plate. In this paper, we propose a mixed character level and word level English license plate recognition algorithm using deep learning neural networks. The difference of Gaussian method is used to segment character and word by generating a black and white image with emphasized character strokes and separated touching characters. The proposed deep learning neural networks are implemented on the LPR system at the gate of a building in Kuala-Lumpur for the collection of database and the evaluation of algorithm performance. The evaluation results show that the proposed Malaysian English LPR can be used in commercial market with 98.01% accuracy.

Tumor Segmentation in Multimodal Brain MRI Using Deep Learning Approaches

  • Al Shehri, Waleed;Jannah, Najlaa
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.343-351
    • /
    • 2022
  • A brain tumor forms when some tissue becomes old or damaged but does not die when it must, preventing new tissue from being born. Manually finding such masses in the brain by analyzing MRI images is challenging and time-consuming for experts. In this study, our main objective is to detect the brain's tumorous part, allowing rapid diagnosis to treat the primary disease instantly. With image processing techniques and deep learning prediction algorithms, our research makes a system capable of finding a tumor in MRI images of a brain automatically and accurately. Our tumor segmentation adopts the U-Net deep learning segmentation on the standard MICCAI BRATS 2018 dataset, which has MRI images with different modalities. The proposed approach was evaluated and achieved Dice Coefficients of 0.9795, 0.9855, 0.9793, and 0.9950 across several test datasets. These results show that the proposed system achieves excellent segmentation of tumors in MRIs using deep learning techniques such as the U-Net algorithm.

Deep Learning-Based Inverse Design for Engineering Systems: A Study on Supervised and Unsupervised Learning Models

  • Seong-Sin Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.127-135
    • /
    • 2024
  • Recent studies have shown that inverse design using deep learning has the potential to rapidly generate the optimal design that satisfies the target performance without the need for iterative optimization processes. Unlike traditional methods, deep learning allows the network to rapidly generate a large number of solution candidates for the same objective after a single training, and enables the generation of diverse designs tailored to the objectives of inverse design. These inverse design techniques are expected to significantly enhance the efficiency and innovation of design processes in various fields such as aerospace, biology, medical, and engineering. We analyzes inverse design models that are mainly utilized in the nano and chemical fields, and proposes inverse design models based on supervised and unsupervised learning that can be applied to the engineering system. It is expected to present the possibility of effectively applying inverse design methodologies to the design optimization problem in the field of engineering according to each specific objective.

Recommendation system using Deep Autoencoder for Tensor data

  • Park, Jina;Yong, Hwan-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.87-93
    • /
    • 2019
  • These days, as interest in the recommendation system with deep learning is increasing, a number of related studies to develop a performance for collaborative filtering through autoencoder, a state-of-the-art deep learning neural network architecture has advanced considerably. The purpose of this study is to propose autoencoder which is used by the recommendation system to predict ratings, and we added more hidden layers to the original architecture of autoencoder so that we implemented deep autoencoder with 3 to 5 hidden layers for much deeper architecture. In this paper, therefore we make a comparison between the performance of them. In this research, we use 2-dimensional arrays and 3-dimensional tensor as the input dataset. As a result, we found a correlation between matrix entry of the 3-dimensional dataset such as item-time and user-time and also figured out that deep autoencoder with extra hidden layers generalized even better performance than autoencoder.