• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.033 seconds

Deep Learning Based Side-Channel Analysis for Recent Masking Countermeasure on SIKE (SIKE에서의 최신 마스킹 대응기법에 대한 딥러닝 기반 부채널 전력 분석)

  • Woosang Im;Jaeyoung Jang;Hyunil Kim;Changho Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.151-164
    • /
    • 2023
  • Recently, the development of quantum computers means a great threat to existing public key system based on discrete algebra problems or factorization problems. Accordingly, NIST is currently in the process of contesting and screening PQC(Post Quantum Cryptography) that can be implemented in both the computing environment and the upcoming quantum computing environment. Among them, SIKE is the only Isogeny-based cipher and has the advantage of a shorter public key compared to other PQC with the same safety. However, like conventional cryptographic algorithms, all quantum-resistant ciphers must be safe for existing cryptanlysis. In this paper, we studied power analysis-based cryptographic analysis techniques for SIKE, and notably we analyzed SIKE through wavelet transformation and deep learning-based clustering power analysis. As a result, the analysis success rate was close to 100% even in SIKE with applied masking response techniques that defend the accuracy of existing clustering power analysis techniques to around 50%, and it was confirmed that was the strongest attack on SIKE.

A deep learning framework for wind pressure super-resolution reconstruction

  • Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.405-421
    • /
    • 2023
  • Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.

Sentiment Analysis for COVID-19 Vaccine Popularity

  • Muhammad Saeed;Naeem Ahmed;Abid Mehmood;Muhammad Aftab;Rashid Amin;Shahid Kamal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1377-1393
    • /
    • 2023
  • Social media is used for various purposes including entertainment, communication, information search, and voicing their thoughts and concerns about a service, product, or issue. The social media data can be used for information mining and getting insights from it. The World Health Organization has listed COVID-19 as a global epidemic since 2020. People from every aspect of life as well as the entire health system have been severely impacted by this pandemic. Even now, after almost three years of the pandemic declaration, the fear caused by the COVID-19 virus leading to higher depression, stress, and anxiety levels has not been fully overcome. This has also triggered numerous kinds of discussions covering various aspects of the pandemic on the social media platforms. Among these aspects is the part focused on vaccines developed by different countries, their features and the advantages and disadvantages associated with each vaccine. Social media users often share their thoughts about vaccinations and vaccines. This data can be used to determine the popularity levels of vaccines, which can provide the producers with some insight for future decision making about their product. In this article, we used Twitter data for the vaccine popularity detection. We gathered data by scraping tweets about various vaccines from different countries. After that, various machine learning and deep learning models, i.e., naive bayes, decision tree, support vector machines, k-nearest neighbor, and deep neural network are used for sentiment analysis to determine the popularity of each vaccine. The results of experiments show that the proposed deep neural network model outperforms the other models by achieving 97.87% accuracy.

Identification of Multiple Cancer Cell Lines from Microscopic Images via Deep Learning (심층 학습을 통한 암세포 광학영상 식별기법)

  • Park, Jinhyung;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.374-376
    • /
    • 2021
  • For the diagnosis of cancer-related diseases in clinical practice, pathological examination using biopsy is essential after basic diagnosis using imaging equipment. In order to proceed with such a biopsy, the assistance of an oncologist, clinical pathologist, etc. with specialized knowledge and the minimum required time are essential for confirmation. In recent years, research related to the establishment of a system capable of automatic classification of cancer cells using artificial intelligence is being actively conducted. However, previous studies show limitations in the type and accuracy of cells based on a limited algorithm. In this study, we propose a method to identify a total of 4 cancer cells through a convolutional neural network, a kind of deep learning. The optical images obtained through cell culture were learned through EfficientNet after performing pre-processing such as identification of the location of cells and image segmentation using OpenCV. The model used various hyper parameters based on EfficientNet, and trained InceptionV3 to compare and analyze the performance. As a result, cells were classified with a high accuracy of 96.8%, and this analysis method is expected to be helpful in confirming cancer.

  • PDF

Deep Learning-Based Defects Detection Method of Expiration Date Printed In Product Package (딥러닝 기반의 제품 포장에 인쇄된 유통기한 결함 검출 방법)

  • Lee, Jong-woon;Jeong, Seung Su;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.463-465
    • /
    • 2021
  • Currently, the inspection method printed on food packages and boxes is to sample only a few products and inspect them with human eyes. Such a sampling inspection has the limitation that only a small number of products can be inspected. Therefore, accurate inspection using a camera is required. This paper proposes a deep learning object recognition technology model, which is an artificial intelligence technology, as a method for detecting the defects of expiration date printed on the product packaging. Using the Faster R-CNN (region convolution neural network) model, the color images, converted gray images, and converted binary images of the printed expiration date are trained and then tested, and each detection rates are compared. The detection performance of expiration date printed on the package by the proposed method showed the same detection performance as that of conventional vision-based inspection system.

  • PDF

Spam Image Detection Model based on Deep Learning for Improving Spam Filter

  • Seong-Guk Nam;Dong-Gun Lee;Yeong-Seok Seo
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.289-301
    • /
    • 2023
  • Due to the development and dissemination of modern technology, anyone can easily communicate using services such as social network service (SNS) through a personal computer (PC) or smartphone. The development of these technologies has caused many beneficial effects. At the same time, bad effects also occurred, one of which was the spam problem. Spam refers to unwanted or rejected information received by unspecified users. The continuous exposure of such information to service users creates inconvenience in the user's use of the service, and if filtering is not performed correctly, the quality of service deteriorates. Recently, spammers are creating more malicious spam by distorting the image of spam text so that optical character recognition (OCR)-based spam filters cannot easily detect it. Fortunately, the level of transformation of image spam circulated on social media is not serious yet. However, in the mail system, spammers (the person who sends spam) showed various modifications to the spam image for neutralizing OCR, and therefore, the same situation can happen with spam images on social media. Spammers have been shown to interfere with OCR reading through geometric transformations such as image distortion, noise addition, and blurring. Various techniques have been studied to filter image spam, but at the same time, methods of interfering with image spam identification using obfuscated images are also continuously developing. In this paper, we propose a deep learning-based spam image detection model to improve the existing OCR-based spam image detection performance and compensate for vulnerabilities. The proposed model extracts text features and image features from the image using four sub-models. First, the OCR-based text model extracts the text-related features, whether the image contains spam words, and the word embedding vector from the input image. Then, the convolution neural network-based image model extracts image obfuscation and image feature vectors from the input image. The extracted feature is determined whether it is a spam image by the final spam image classifier. As a result of evaluating the F1-score of the proposed model, the performance was about 14 points higher than the OCR-based spam image detection performance.

Efficient Semi-automatic Annotation System based on Deep Learning

  • Hyunseok Lee;Hwa Hui Shin;Soohoon Maeng;Dae Gwan Kim;Hyojeong Moon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.267-275
    • /
    • 2023
  • This paper presents the development of specialized software for annotating volume-of-interest on 18F-FDG PET/CT images with the goal of facilitating the studies and diagnosis of head and neck cancer (HNC). To achieve an efficient annotation process, we employed the SE-Norm-Residual Layer-based U-Net model. This model exhibited outstanding proficiency to segment cancerous regions within 18F-FDG PET/CT scans of HNC cases. Manual annotation function was also integrated, allowing researchers and clinicians to validate and refine annotations based on dataset characteristics. Workspace has a display with fusion of both PET and CT images, providing enhance user convenience through simultaneous visualization. The performance of deeplearning model was validated using a Hecktor 2021 dataset, and subsequently developed semi-automatic annotation functionalities. We began by performing image preprocessing including resampling, normalization, and co-registration, followed by an evaluation of the deep learning model performance. This model was integrated into the software, serving as an initial automatic segmentation step. Users can manually refine pre-segmented regions to correct false positives and false negatives. Annotation images are subsequently saved along with their corresponding 18F-FDG PET/CT fusion images, enabling their application across various domains. In this study, we developed a semi-automatic annotation software designed for efficiently generating annotated lesion images, with applications in HNC research and diagnosis. The findings indicated that this software surpasses conventional tools, particularly in the context of HNC-specific annotation with 18F-FDG PET/CT data. Consequently, developed software offers a robust solution for producing annotated datasets, driving advances in the studies and diagnosis of HNC.

Research on analysis of articleable advertisements and design of extraction method for articleable advertisements using deep learning

  • Seoksoo Kim;Jae-Young Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.13-22
    • /
    • 2024
  • There is a need for and positive aspects of article-based advertising, but as exaggerated and disguised information is delivered due to some indiscriminate 'article-based advertisements', readers have difficulty distinguishing between general articles and article-based advertisements, leading to a lot of misinterpretation and confusion of information. is doing Since readers will continue to acquire new information and apply this information at the right time and place to bring a lot of value, it is judged to be even more important to distinguish between accurate general articles and article-like advertisements. Therefore, as differentiated information between general articles and article-like advertisements is needed, as part of this, for readers who have difficulty identifying accurate information due to such indiscriminate article-like advertisements in Internet newspapers, this paper introduces IT and AI technologies. We attempted to present a method that can be solved in terms of a system that incorporates, and this method was designed to extract articleable advertisements using a knowledge-based natural language processing method that finds and refines advertising keywords and deep learning technology.

Image-based Soft Drink Type Classification and Dietary Assessment System Using Deep Convolutional Neural Network with Transfer Learning

  • Rubaiya Hafiz;Mohammad Reduanul Haque;Aniruddha Rakshit;Amina khatun;Mohammad Shorif Uddin
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.158-168
    • /
    • 2024
  • There is hardly any person in modern times who has not taken soft drinks instead of drinking water. The rate of people taking soft drinks being surprisingly high, researchers around the world have cautioned from time to time that these drinks lead to weight gain, raise the risk of non-communicable diseases and so on. Therefore, in this work an image-based tool is developed to monitor the nutritional information of soft drinks by using deep convolutional neural network with transfer learning. At first, visual saliency, mean shift segmentation, thresholding and noise reduction technique, collectively known as 'pre-processing' are adopted to extract the location of drinks region. After removing backgrounds and segment out only the desired area from image, we impose Discrete Wavelength Transform (DWT) based resolution enhancement technique is applied to improve the quality of image. After that, transfer learning model is employed for the classification of drinks. Finally, nutrition value of each drink is estimated using Bag-of-Feature (BoF) based classification and Euclidean distance-based ratio calculation technique. To achieve this, a dataset is built with ten most consumed soft drinks in Bangladesh. These images were collected from imageNet dataset as well as internet and proposed method confirms that it has the ability to detect and recognize different types of drinks with an accuracy of 98.51%.

Analysis for File Access Characteristics of Mobile Artificial Intelligence Workloads (모바일 인공지능 워크로드의 파일 접근 특성 분석)

  • Jeongha Lee;Soojung Lim;Hyokyung Bahn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.77-82
    • /
    • 2024
  • Recent advancements in artificial intelligence (AI) technology have led to an increase in the implementation of AI applications in mobile environments. However, due to the limited resources in mobile devices compared to desktops and servers, there is growing interest in research aimed at efficiently executing AI workloads on mobile platforms. While most studies focus on offloading to edge or cloud solutions to mitigate computing resource constraints, research on the characteristics of file I/O related to storage access in mobile settings remains underexplored. This paper analyzes file I/O traces generated during the execution of deep learning applications in mobile environments and investigates how they differ from traditional mobile workloads. We anticipate that the findings of this study will be utilized to design future smartphone system software more efficiently, considering the file access characteristics of deep learning.