• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.031 seconds

Deep learning system for distinguishing between nasopalatine duct cysts and radicular cysts arising in the midline region of the anterior maxilla on panoramic radiographs

  • Yoshitaka Kise;Chiaki Kuwada;Mizuho Mori;Motoki Fukuda;Yoshiko Ariji;Eiichiro Ariji
    • Imaging Science in Dentistry
    • /
    • v.54 no.1
    • /
    • pp.33-41
    • /
    • 2024
  • Purpose: The aims of this study were to create a deep learning model to distinguish between nasopalatine duct cysts (NDCs), radicular cysts, and no-lesions (normal) in the midline region of the anterior maxilla on panoramic radiographs and to compare its performance with that of dental residents. Materials and Methods: One hundred patients with a confirmed diagnosis of NDC (53 men, 47 women; average age, 44.6±16.5 years), 100 with radicular cysts (49 men, 51 women; average age, 47.5±16.4 years), and 100 with normal groups (56 men, 44 women; average age, 34.4±14.6 years) were enrolled in this study. Cases were randomly assigned to the training datasets (80%) and the test dataset (20%). Then, 20% of the training data were randomly assigned as validation data. A learning model was created using a customized DetectNet built in Digits version 5.0 (NVIDIA, Santa Clara, USA). The performance of the deep learning system was assessed and compared with that of two dental residents. Results: The performance of the deep learning system was superior to that of the dental residents except for the recall of radicular cysts. The areas under the curve (AUCs) for NDCs and radicular cysts in the deep learning system were significantly higher than those of the dental residents. The results for the dental residents revealed a significant difference in AUC between NDCs and normal groups. Conclusion: This study showed superior performance in detecting NDCs and radicular cysts and in distinguishing between these lesions and normal groups.

Design and Verification of Spacecraft Pose Estimation Algorithm using Deep Learning

  • Shinhye Moon;Sang-Young Park;Seunggwon Jeon;Dae-Eun Kang
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.61-78
    • /
    • 2024
  • This study developed a real-time spacecraft pose estimation algorithm that combined a deep learning model and the least-squares method. Pose estimation in space is crucial for automatic rendezvous docking and inter-spacecraft communication. Owing to the difficulty in training deep learning models in space, we showed that actual experimental results could be predicted through software simulations on the ground. We integrated deep learning with nonlinear least squares (NLS) to predict the pose from a single spacecraft image in real time. We constructed a virtual environment capable of mass-producing synthetic images to train a deep learning model. This study proposed a method for training a deep learning model using pure synthetic images. Further, a visual-based real-time estimation system suitable for use in a flight testbed was constructed. Consequently, it was verified that the hardware experimental results could be predicted from software simulations with the same environment and relative distance. This study showed that a deep learning model trained using only synthetic images can be sufficiently applied to real images. Thus, this study proposed a real-time pose estimation software for automatic docking and demonstrated that the method constructed with only synthetic data was applicable in space.

A Study on the Establishment of Odor Management System in Gangwon-do Traditional Market

  • Min-Jae JUNG;Kwang-Yeol YOON;Sang-Rul KIM;Su-Hye KIM
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.6 no.2
    • /
    • pp.27-31
    • /
    • 2023
  • Purpose: Establishment of a real-time monitoring system for odor control in traditional markets in Gangwon-do and a system for linking prevention facilities. Research design, data and methodology: Build server and system logic based on data through real-time monitoring device (sensor-based). A temporary data generation program for deep learning is developed to develop a model for odor data. Results: A REST API was developed for using the model prediction service, and a test was performed to find an algorithm with high prediction probability and parameter values optimized for learning. In the deep learning algorithm for AI modeling development, Pandas was used for data analysis and processing, and TensorFlow V2 (keras) was used as the deep learning library. The activation function was swish, the performance of the model was optimized for Adam, the performance was measured with MSE, the model method was Functional API, and the model storage format was Sequential API (LSTM)/HDF5. Conclusions: The developed system has the potential to effectively monitor and manage odors in traditional markets. By utilizing real-time data, the system can provide timely alerts and facilitate preventive measures to control and mitigate odors. The AI modeling component enhances the system's predictive capabilities, allowing for proactive odor management.

Artificial intelligence, machine learning, and deep learning in women's health nursing

  • Jeong, Geum Hee
    • Women's Health Nursing
    • /
    • v.26 no.1
    • /
    • pp.5-9
    • /
    • 2020
  • Artificial intelligence (AI), which includes machine learning and deep learning has been introduced to nursing care in recent years. The present study reviews the following topics: the concepts of AI, machine learning, and deep learning; examples of AI-based nursing research; the necessity of education on AI in nursing schools; and the areas of nursing care where AI is useful. AI refers to an intelligent system consisting not of a human, but a machine. Machine learning refers to computers' ability to learn without being explicitly programmed. Deep learning is a subset of machine learning that uses artificial neural networks consisting of multiple hidden layers. It is suggested that the educational curriculum should include big data, the concept of AI, algorithms and models of machine learning, the model of deep learning, and coding practice. The standard curriculum should be organized by the nursing society. An example of an area of nursing care where AI is useful is prenatal nursing interventions based on pregnant women's nursing records and AI-based prediction of the risk of delivery according to pregnant women's age. Nurses should be able to cope with the rapidly developing environment of nursing care influenced by AI and should understand how to apply AI in their field. It is time for Korean nurses to take steps to become familiar with AI in their research, education, and practice.

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W.;Jin, T.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.567-585
    • /
    • 2019
  • In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.

Preliminary Study of Deep Learning-based Precipitation

  • Kim, Hee-Un;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.423-430
    • /
    • 2017
  • Recently, data analysis research has been carried out using the deep learning technique in various fields such as image interpretation and/or classification. Various types of algorithms are being developed for many applications. In this paper, we propose a precipitation prediction algorithm based on deep learning with high accuracy in order to take care of the possible severe damage caused by climate change. Since the geographical and seasonal characteristics of Korea are clearly distinct, the meteorological factors have repetitive patterns in a time series. Since the LSTM (Long Short-Term Memory) is a powerful algorithm for consecutive data, it was used to predict precipitation in this study. For the numerical test, we calculated the PWV (Precipitable Water Vapor) based on the tropospheric delay of the GNSS (Global Navigation Satellite System) signals, and then applied the deep learning technique to the precipitation prediction. The GNSS data was processed by scientific software with the troposphere model of Saastamoinen and the Niell mapping function. The RMSE (Root Mean Squared Error) of the precipitation prediction based on LSTM performs better than that of ANN (Artificial Neural Network). By adding GNSS-based PWV as a feature, the over-fitting that is a latent problem of deep learning was prevented considerably as discussed in this study.

Research Trends Analysis of Machine Learning and Deep Learning: Focused on the Topic Modeling (머신러닝 및 딥러닝 연구동향 분석: 토픽모델링을 중심으로)

  • Kim, Chang-Sik;Kim, Namgyu;Kwahk, Kee-Young
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.2
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to examine the trends on machine learning and deep learning research in the published journals from the Web of Science Database. To achieve the study purpose, we used the abstracts of 20,664 articles published between 1990 and 2017, which include the word 'machine learning', 'deep learning', and 'artificial neural network' in their titles. Twenty major research topics were identified from topic modeling analysis and they were inclusive of classification accuracy, machine learning, optimization problem, time series model, temperature flow, engine variable, neuron layer, spectrum sample, image feature, strength property, extreme machine learning, control system, energy power, cancer patient, descriptor compound, fault diagnosis, soil map, concentration removal, protein gene, and job problem. The analysis of the time-series linear regression showed that all identified topics in machine learning research were 'hot' ones.

Fake News Detection Using Deep Learning

  • Lee, Dong-Ho;Kim, Yu-Ri;Kim, Hyeong-Jun;Park, Seung-Myun;Yang, Yu-Jun
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1119-1130
    • /
    • 2019
  • With the wide spread of Social Network Services (SNS), fake news-which is a way of disguising false information as legitimate media-has become a big social issue. This paper proposes a deep learning architecture for detecting fake news that is written in Korean. Previous works proposed appropriate fake news detection models for English, but Korean has two issues that cannot apply existing models: Korean can be expressed in shorter sentences than English even with the same meaning; therefore, it is difficult to operate a deep neural network because of the feature scarcity for deep learning. Difficulty in semantic analysis due to morpheme ambiguity. We worked to resolve these issues by implementing a system using various convolutional neural network-based deep learning architectures and "Fasttext" which is a word-embedding model learned by syllable unit. After training and testing its implementation, we could achieve meaningful accuracy for classification of the body and context discrepancies, but the accuracy was low for classification of the headline and body discrepancies.

A TabNet - Based System for Water Quality Prediction in Aquaculture

  • Nguyen, Trong–Nghia;Kim, Soo Hyung;Do, Nhu-Tai;Hong, Thai-Thi Ngoc;Yang, Hyung Jeong;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.39-52
    • /
    • 2022
  • In the context of the evolution of automation and intelligence, deep learning and machine learning algorithms have been widely applied in aquaculture in recent years, providing new opportunities for the digital realization of aquaculture. Especially, water quality management deserves attention thanks to its importance to food organisms. In this study, we proposed an end-to-end deep learning-based TabNet model for water quality prediction. From major indexes of water quality assessment, we applied novel deep learning techniques and machine learning algorithms in innovative fish aquaculture to predict the number of water cells counting. Furthermore, the application of deep learning in aquaculture is outlined, and the obtained results are analyzed. The experiment on in-house data showed an optimistic impact on the application of artificial intelligence in aquaculture, helping to reduce costs and time and increase efficiency in the farming process.

Affective Computing Among Individuals in Deep Learning

  • Kim, Seong-Kyu (Steve)
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • This paper is a study of deep learning among artificial intelligence technology which has been developing many technologies recently. Especially, I am talking about emotional computing that has been mentioned a lot recently during deep learning. Emotional computing, in other words, is a passive concept that is dominated by people who scientifically analyze human sensibilities and reflect them in product development or system design, and a more active concept that studies how devices and systems understand humans and communicate with people in different modes. This emotional signal extraction, sensitivity, and psychology recognition technology is defined as a technology to process, analyze, and recognize psycho-sensitivity based on micro-small, hyper-sensor technology, and sensitive signals and information that can be sensed by the active movement of the autonomic nervous system caused by human emotional changes in everyday life. Chapter 1 talks about overview and Chapter 2 shows related research. Chapter 3 shows the problems and models of real emotional computing and Chapter 4 shows this paper as a conclusion.