• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.028 seconds

Deep Learning Frameworks for Cervical Mobilization Based on Website Images

  • Choi, Wansuk;Heo, Seoyoon
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.1
    • /
    • pp.2261-2266
    • /
    • 2021
  • Background: Deep learning related research works on website medical images have been actively conducted in the field of health care, however, articles related to the musculoskeletal system have been introduced insufficiently, deep learning-based studies on classifying orthopedic manual therapy images would also just be entered. Objectives: To create a deep learning model that categorizes cervical mobilization images and establish a web application to find out its clinical utility. Design: Research and development. Methods: Three types of cervical mobilization images (central posteroanterior (CPA) mobilization, unilateral posteroanterior (UPA) mobilization, and anteroposterior (AP) mobilization) were obtained using functions of 'Download All Images' and a web crawler. Unnecessary images were filtered from 'Auslogics Duplicate File Finder' to obtain the final 144 data (CPA=62, UPA=46, AP=36). Training classified into 3 classes was conducted in Teachable Machine. The next procedures, the trained model source was uploaded to the web application cloud integrated development environment (https://ide.goorm.io/) and the frame was built. The trained model was tested in three environments: Teachable Machine File Upload (TMFU), Teachable Machine Webcam (TMW), and Web Service webcam (WSW). Results: In three environments (TMFU, TMW, WSW), the accuracy of CPA mobilization images was 81-96%. The accuracy of the UPA mobilization image was 43~94%, and the accuracy deviation was greater than that of CPA. The accuracy of the AP mobilization image was 65-75%, and the deviation was not large compared to the other groups. In the three environments, the average accuracy of CPA was 92%, and the accuracy of UPA and AP was similar up to 70%. Conclusion: This study suggests that training of images of orthopedic manual therapy using machine learning open software is possible, and that web applications made using this training model can be used clinically.

Transfer learning in a deep convolutional neural network for implant fixture classification: A pilot study

  • Kim, Hak-Sun;Ha, Eun-Gyu;Kim, Young Hyun;Jeon, Kug Jin;Lee, Chena;Han, Sang-Sun
    • Imaging Science in Dentistry
    • /
    • v.52 no.2
    • /
    • pp.219-224
    • /
    • 2022
  • Purpose: This study aimed to evaluate the performance of transfer learning in a deep convolutional neural network for classifying implant fixtures. Materials and Methods: Periapical radiographs of implant fixtures obtained using the Superline (Dentium Co. Ltd., Seoul, Korea), TS III(Osstem Implant Co. Ltd., Seoul, Korea), and Bone Level Implant(Institut Straumann AG, Basel, Switzerland) systems were selected from patients who underwent dental implant treatment. All 355 implant fixtures comprised the total dataset and were annotated with the name of the system. The total dataset was split into a training dataset and a test dataset at a ratio of 8 to 2, respectively. YOLOv3 (You Only Look Once version 3, available at https://pjreddie.com/darknet/yolo/), a deep convolutional neural network that has been pretrained with a large image dataset of objects, was used to train the model to classify fixtures in periapical images, in a process called transfer learning. This network was trained with the training dataset for 100, 200, and 300 epochs. Using the test dataset, the performance of the network was evaluated in terms of sensitivity, specificity, and accuracy. Results: When YOLOv3 was trained for 200 epochs, the sensitivity, specificity, accuracy, and confidence score were the highest for all systems, with overall results of 94.4%, 97.9%, 96.7%, and 0.75, respectively. The network showed the best performance in classifying Bone Level Implant fixtures, with 100.0% sensitivity, specificity, and accuracy. Conclusion: Through transfer learning, high performance could be achieved with YOLOv3, even using a small amount of data.

Performance of Exercise Posture Correction System Based on Deep Learning (딥러닝 기반 운동 자세 교정 시스템의 성능)

  • Hwang, Byungsun;Kim, Jeongho;Lee, Ye-Ram;Kyeong, Chanuk;Seon, Joonho;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.177-183
    • /
    • 2022
  • Recently, interesting of home training is getting bigger due to COVID-19. Accordingly, research on applying HAR(human activity recognition) technology to home training has been conducted. However, existing paper of HAR proposed static activity instead of dynamic activity. In this paper, the deep learning model where dynamic exercise posture can be analyzed and the accuracy of the user's exercise posture can be shown is proposed. Fitness images of AI-hub are analyzed by blaze pose. The experiment is compared with three types of deep learning model: RNN(recurrent neural network), LSTM(long short-term memory), CNN(convolution neural network). In simulation results, it was shown that the f1-score of RNN, LSTM and CNN is 0.49, 0.87 and 0.98, respectively. It was confirmed that CNN is more suitable for human activity recognition than other models from simulation results. More exercise postures can be analyzed using a variety learning data.

Determination of High-pass Filter Frequency with Deep Learning for Ground Motion (딥러닝 기반 지반운동을 위한 하이패스 필터 주파수 결정 기법)

  • Lee, Jin Koo;Seo, JeongBeom;Jeon, SeungJin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.183-191
    • /
    • 2024
  • Accurate seismic vulnerability assessment requires high quality and large amounts of ground motion data. Ground motion data generated from time series contains not only the seismic waves but also the background noise. Therefore, it is crucial to determine the high-pass cut-off frequency to reduce the background noise. Traditional methods for determining the high-pass filter frequency are based on human inspection, such as comparing the noise and the signal Fourier Amplitude Spectrum (FAS), f2 trend line fitting, and inspection of the displacement curve after filtering. However, these methods are subject to human error and unsuitable for automating the process. This study used a deep learning approach to determine the high-pass filter frequency. We used the Mel-spectrogram for feature extraction and mixup technique to overcome the lack of data. We selected convolutional neural network (CNN) models such as ResNet, DenseNet, and EfficientNet for transfer learning. Additionally, we chose ViT and DeiT for transformer-based models. The results showed that ResNet had the highest performance with R2 (the coefficient of determination) at 0.977 and the lowest mean absolute error (MAE) and RMSE (root mean square error) at 0.006 and 0.074, respectively. When applied to a seismic event and compared to the traditional methods, the determination of the high-pass filter frequency through the deep learning method showed a difference of 0.1 Hz, which demonstrates that it can be used as a replacement for traditional methods. We anticipate that this study will pave the way for automating ground motion processing, which could be applied to the system to handle large amounts of data efficiently.

Gated Recurrent Unit Architecture for Context-Aware Recommendations with improved Similarity Measures

  • Kala, K.U.;Nandhini, M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.538-561
    • /
    • 2020
  • Recommender Systems (RecSys) have a major role in e-commerce for recommending products, which they may like for every user and thus improve their business aspects. Although many types of RecSyss are there in the research field, the state of the art RecSys has focused on finding the user similarity based on sequence (e.g. purchase history, movie-watching history) analyzing and prediction techniques like Recurrent Neural Network in Deep learning. That is RecSys has considered as a sequence prediction problem. However, evaluation of similarities among the customers is challenging while considering temporal aspects, context and multi-component ratings of the item-records in the customer sequences. For addressing this issue, we are proposing a Deep Learning based model which learns customer similarity directly from the sequence to sequence similarity as well as item to item similarity by considering all features of the item, contexts, and rating components using Dynamic Temporal Warping(DTW) distance measure for dynamic temporal matching and 2D-GRU (Two Dimensional-Gated Recurrent Unit) architecture. This will overcome the limitation of non-linearity in the time dimension while measuring the similarity, and the find patterns more accurately and speedily from temporal and spatial contexts. Experiment on the real world movie data set LDOS-CoMoDa demonstrates the efficacy and promising utility of the proposed personalized RecSys architecture.

Three-Dimensional Visualization of Medical Image using Image Segmentation Algorithm based on Deep Learning (딥 러닝 기반의 영상분할 알고리즘을 이용한 의료영상 3차원 시각화에 관한 연구)

  • Lim, SangHeon;Kim, YoungJae;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.468-475
    • /
    • 2020
  • In this paper, we proposed a three-dimensional visualization system for medical images in augmented reality based on deep learning. In the proposed system, the artificial neural network model performed fully automatic segmentation of the region of lung and pulmonary nodule from chest CT images. After applying the three-dimensional volume rendering method to the segmented images, it was visualized in augmented reality devices. As a result of the experiment, when nodules were present in the region of lung, it could be easily distinguished with the naked eye. Also, the location and shape of the lesions were intuitively confirmed. The evaluation was accomplished by comparing automated segmentation results of the test dataset to the manual segmented image. Through the evaluation of the segmentation model, we obtained the region of lung DSC (Dice Similarity Coefficient) of 98.77%, precision of 98.45%, recall of 99.10%. And the region of pulmonary nodule DSC of 91.88%, precision of 93.05%, recall of 90.94%. If this proposed system will be applied in medical fields such as medical practice and medical education, it is expected that it can contribute to custom organ modeling, lesion analysis, and surgical education and training of patients.

Change Attention-based Vehicle Scratch Detection System (변화 주목 기반 차량 흠집 탐지 시스템)

  • Lee, EunSeong;Lee, DongJun;Park, GunHee;Lee, Woo-Ju;Sim, Donggyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.228-239
    • /
    • 2022
  • In this paper, we propose an unmanned vehicle scratch detection deep learning model for car sharing services. Conventional scratch detection models consist of two steps: 1) a deep learning module for scratch detection of images before and after rental, 2) a manual matching process for finding newly generated scratches. In order to build a fully automatic scratch detection model, we propose a one-step unmanned scratch detection deep learning model. The proposed model is implemented by applying transfer learning and fine-tuning to the deep learning model that detects changes in satellite images. In the proposed car sharing service, specular reflection greatly affects the scratch detection performance since the brightness of the gloss-treated automobile surface is anisotropic and a non-expert user takes a picture with a general camera. In order to reduce detection errors caused by specular reflected light, we propose a preprocessing process for removing specular reflection components. For data taken by mobile phone cameras, the proposed system can provide high matching performance subjectively and objectively. The scores for change detection metrics such as precision, recall, F1, and kappa are 67.90%, 74.56%, 71.08%, and 70.18%, respectively.

Multi-modal Representation Learning for Classification of Imported Goods (수입물품의 품목 분류를 위한 멀티모달 표현 학습)

  • Apgil Lee;Keunho Choi;Gunwoo Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.203-214
    • /
    • 2023
  • The Korea Customs Service is efficiently handling business with an electronic customs system that can effectively handle one-stop business. This is the case and a more effective method is needed. Import and export require HS Code (Harmonized System Code) for classification and tax rate application for all goods, and item classification that classifies the HS Code is a highly difficult task that requires specialized knowledge and experience and is an important part of customs clearance procedures. Therefore, this study uses various types of data information such as product name, product description, and product image in the item classification request form to learn and develop a deep learning model to reflect information well based on Multimodal representation learning. It is expected to reduce the burden of customs duties by classifying and recommending HS Codes and help with customs procedures by promptly classifying items.

Development of Checking System for Emergency using Behavior-based Object Detection (행동기반 사물 감지를 통한 위급상황 확인 시스템 개발)

  • Kim, MinJe;Koh, KyuHan;Jo, JaeChoon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.140-146
    • /
    • 2020
  • Since the current crime prevention systems have a standard mechanism that victims request for help by themselves or ask for help from a third party nearby, it is difficult to obtain appropriate help in situations where a prompt response is not possible. In this study, we proposed and developed an automatic rescue request model and system using Deep Learning and OpenCV. This study is based on the prerequisite that immediate and precise threat detection is essential to ensure the user's safety. We validated and verified that the system identified by more than 99% of the object's accuracy to ensure the user's safety, and it took only three seconds to complete all necessary algorithms. We plan to collect various types of threats and a large amount of data to reinforce the system's capabilities so that the system can recognize and deal with all dangerous situations, including various threats and unpredictable cases.

Deep Learning Music Genre Classification System Model Improvement Using Generative Adversarial Networks (GAN) (생성적 적대 신경망(GAN)을 이용한 딥러닝 음악 장르 분류 시스템 모델 개선)

  • Bae, Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.842-848
    • /
    • 2020
  • Music markets have entered the era of streaming. In order to select and propose music that suits the taste of music consumers, there is an active demand and research on an automatic music genre classification system. We propose a method to improve the accuracy of genre unclassified songs, which was a lack of the previous system, by using a generative adversarial network (GAN) to further develop the automatic voting system for deep learning music genre using Softmax proposed in the previous paper. In the previous study, if the spectrogram of the song was ambiguous to grasp the genre of the song, it was forced to leave it as an unclassified song. In this paper, we proposed a system that increases the accuracy of genre classification of unclassified songs by converting the spectrogram of unclassified songs into an easy-to-read spectrogram using GAN. And the result of the experiment was able to derive an excellent result compared to the existing method.