• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.034 seconds

A Study on Vehicle License Plate Recognition System through Fake License Plate Generator in YOLOv5 (YOLOv5에서 가상 번호판 생성을 통한 차량 번호판 인식 시스템에 관한 연구)

  • Ha, Sang-Hyun;Jeong, Seok Chan;Jeon, Young-Joon;Jang, Mun-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.699-706
    • /
    • 2021
  • Existing license plate recognition system is used as an optical character recognition method, but a method of using deep learning has been proposed in recent studies because it has problems with image quality and Korean misrecognition. This requires a lot of data collection, but the collection of license plates is not easy to collect due to the problem of the Personal Information Protection Act, and labeling work to designate the location of individual license plates is required, but it also requires a lot of time. Therefore, in this paper, to solve this problem, five types of license plates were created using a virtual Korean license plate generation program according to the notice of the Ministry of Land, Infrastructure and Transport. And the generated license plate is synthesized in the license plate part of collectable vehicle images to construct 10,147 learning data to be used in deep learning. The learning data classifies license plates, Korean, and numbers into individual classes and learn using YOLOv5. Since the proposed method recognizes letters and numbers individually, if the font does not change, it can be recognized even if the license plate standard changes or the number of characters increases. As a result of the experiment, an accuracy of 96.82% was obtained, and it can be applied not only to the learned license plate but also to new types of license plates such as new license plates and eco-friendly license plates.

A Hybrid Optimized Deep Learning Techniques for Analyzing Mammograms

  • Bandaru, Satish Babu;Deivarajan, Natarajasivan;Gatram, Rama Mohan Babu
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.73-82
    • /
    • 2022
  • Early detection continues to be the mainstay of breast cancer control as well as the improvement of its treatment. Even so, the absence of cancer symptoms at the onset has early detection quite challenging. Therefore, various researchers continue to focus on cancer as a topic of health to try and make improvements from the perspectives of diagnosis, prevention, and treatment. This research's chief goal is development of a system with deep learning for classification of the breast cancer as non-malignant and malignant using mammogram images. The following two distinct approaches: the first one with the utilization of patches of the Region of Interest (ROI), and the second one with the utilization of the overall images is used. The proposed system is composed of the following two distinct stages: the pre-processing stage and the Convolution Neural Network (CNN) building stage. Of late, the use of meta-heuristic optimization algorithms has accomplished a lot of progress in resolving these problems. Teaching-Learning Based Optimization algorithm (TIBO) meta-heuristic was originally employed for resolving problems of continuous optimization. This work has offered the proposals of novel methods for training the Residual Network (ResNet) as well as the CNN based on the TLBO and the Genetic Algorithm (GA). The classification of breast cancer can be enhanced with direct application of the hybrid TLBO- GA. For this hybrid algorithm, the TLBO, i.e., a core component, will combine the following three distinct operators of the GA: coding, crossover, and mutation. In the TLBO, there is a representation of the optimization solutions as students. On the other hand, the hybrid TLBO-GA will have further division of the students as follows: the top students, the ordinary students, and the poor students. The experiments demonstrated that the proposed hybrid TLBO-GA is more effective than TLBO and GA.

Damage Detection and Classification System for Sewer Inspection using Convolutional Neural Networks based on Deep Learning (CNN을 이용한 딥러닝 기반 하수관 손상 탐지 분류 시스템)

  • Hassan, Syed Ibrahim;Dang, Lien-Minh;Im, Su-hyeon;Min, Kyung-bok;Nam, Jun-young;Moon, Hyeon-joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.451-457
    • /
    • 2018
  • We propose an automatic detection and classification system of sewer damage database based on artificial intelligence and deep learning. In order to optimize the performance, we implemented a robust system against various environmental variations such as illumination and shadow changes. In our proposed system, a crack detection and damage classification method using a deep learning based Convolutional Neural Network (CNN) is implemented. For optimal results, 9,941 CCTV images with $256{\times}256$ pixel resolution were used for machine learning on the damaged area based on the CNN model. As a result, the recognition rate of 98.76% was obtained. Total of 646 images of $720{\times}480$ pixel resolution were extracted from various sewage DB for performance evaluation. Proposed system presents the optimal recognition rate for the automatic detection and classification of damage in the sewer DB constructed in various environments.

Modbus TCP based Solar Power Plant Monitoring System using Raspberry Pi (라즈베리파이를 이용한 Modbus TCP 기반 태양광 발전소 모니터링 시스템)

  • Park, Jin-Hwan;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.620-626
    • /
    • 2020
  • This research propose and simulate a solar power generation system monitoring system based on Modbus TCP communication using RaspberryPi, an IOT equipment, as a master and an inverter as a slave. In this model, various sensors are added to the RaspberryPi to add necessary information for monitoring solar power plants, and power generation prediction and monitoring information are transmitted to the smart phone through real-time power generation prediction. In addition, information that is continuously generated by the solar power plant is built on the server as big data, and a deep learning model for predicting power generation is trained and updated. As a result of the study, stable communication was possible based on Modbus TCP with the Raspberry Pi in the inverter, and real-time prediction was possible with the deep learning model learned in the Raspberry Pi. The server was able to train various deep learning models with big data, and it was confirmed that LSTM showed the best error with a learning error of 0.0069, a test error of 0.0075, and an RMSE of 0.0866. This model suggested that it is possible to implement a real-time monitoring system that is simpler, more convenient, and can predict the amount of power generation for inverters of various manufacturers.

An Effective Anomaly Detection Approach based on Hybrid Unsupervised Learning Technologies in NIDS

  • Kangseok Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.494-510
    • /
    • 2024
  • Internet users are exposed to sophisticated cyberattacks that intrusion detection systems have difficulty detecting. Therefore, research is increasing on intrusion detection methods that use artificial intelligence technology for detecting novel cyberattacks. Unsupervised learning-based methods are being researched that learn only from normal data and detect abnormal behaviors by finding patterns. This study developed an anomaly-detection method based on unsupervised machines and deep learning for a network intrusion detection system (NIDS). We present a hybrid anomaly detection approach based on unsupervised learning techniques using the autoencoder (AE), Isolation Forest (IF), and Local Outlier Factor (LOF) algorithms. An oversampling approach that increased the detection rate was also examined. A hybrid approach that combined deep learning algorithms and traditional machine learning algorithms was highly effective in setting the thresholds for anomalies without subjective human judgment. It achieved precision and recall rates respectively of 88.2% and 92.8% when combining two AEs, IF, and LOF while using an oversampling approach to learn more unknown normal data improved the detection accuracy. This approach achieved precision and recall rates respectively of 88.2% and 94.6%, further improving the detection accuracy compared with the hybrid method. Therefore, in NIDS the proposed approach provides high reliability for detecting cyberattacks.

Recent Trends in Multi-Agent Technology and Communication Optimization Research for Swarm Flight of Drones (드론 군집 비행을 위한 다중 에이전트 최신 기술 분석 및 통신 최적화 기술 연구)

  • Kim Eunsu;Jang Yeonju;Bang Jongho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.3
    • /
    • pp.71-84
    • /
    • 2024
  • Artificial intelligence can be cited as a key linkage technology for expanding drones' application fields, and drones combined with artificial intelligence are expected to improve drones' operational capabilities based on algorithms that can solve complex tasks through learning. The purpose of this study is to analyze various latest research cases that apply deep reinforcement learning to drones to solve limitations for performing swarm flight and to propose a new research direction that applies them to multi-agent communication optimization technology. The process of the research is to investigate and analyze the methods for efficient operation of control and communication technologies required for swarm flight to be successful, and to apply algorithms that have the advantage of exchanging richer feedback between agents and having less learning than conventional methods when learning deep reinforcement learning algorithms. It is expected that the efficiency and performance of learning communication protocols optimized for swarm flight will be improved, which will increase the efficiency of mission performance when exploring or scouting large areas through swarm flight in the future.

Automatic Classification of Bridge Component based on Deep Learning (딥러닝 기반 교량 구성요소 자동 분류)

  • Lee, Jae Hyuk;Park, Jeong Jun;Yoon, Hyungchul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.239-245
    • /
    • 2020
  • Recently, BIM (Building Information Modeling) are widely being utilized in Construction industry. However, most structures that have been constructed in the past do not have BIM. For structures without BIM, the use of SfM (Structure from Motion) techniques in the 2D image obtained from the camera allows the generation of 3D model point cloud data and BIM to be established. However, since these generated point cloud data do not contain semantic information, it is necessary to manually classify what elements of the structure. Therefore, in this study, deep learning was applied to automate the process of classifying structural components. In the establishment of deep learning network, Inception-ResNet-v2 of CNN (Convolutional Neural Network) structure was used, and the components of bridge structure were learned through transfer learning. As a result of classifying components using the data collected to verify the developed system, the components of the bridge were classified with an accuracy of 96.13 %.

Realization of home appliance classification system using deep learning (딥러닝을 이용한 가전제품 분류 시스템 구현)

  • Son, Chang-Woo;Lee, Sang-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1718-1724
    • /
    • 2017
  • Recently, Smart plugs for real time monitoring of household appliances based on IoT(Internet of Things) have been activated. Through this, consumers are able to save energy by monitoring real-time energy consumption at all times, and reduce power consumption through alarm function based on consumer setting. In this paper, we measure the alternating current from a wall power outlet for real-time monitoring. At this time, the current pattern for each household appliance was classified and it was experimented with deep learning to determine which product works. As a result, we used a cross validation method and a bootstrap verification method in order to the classification performance according to the type of appliances. Also, it is confirmed that the cost function and the learning success rate are the same as the train data and test data.

Automatic Categorization of Islamic Jurisprudential Legal Questions using Hierarchical Deep Learning Text Classifier

  • AlSabban, Wesam H.;Alotaibi, Saud S.;Farag, Abdullah Tarek;Rakha, Omar Essam;Al Sallab, Ahmad A.;Alotaibi, Majid
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.281-291
    • /
    • 2021
  • The Islamic jurisprudential legal system represents an essential component of the Islamic religion, that governs many aspects of Muslims' daily lives. This creates many questions that require interpretations by qualified specialists, or Muftis according to the main sources of legislation in Islam. The Islamic jurisprudence is usually classified into branches, according to which the questions can be categorized and classified. Such categorization has many applications in automated question-answering systems, and in manual systems in routing the questions to a specialized Mufti to answer specific topics. In this work we tackle the problem of automatic categorisation of Islamic jurisprudential legal questions using deep learning techniques. In this paper, we build a hierarchical deep learning model that first extracts the question text features at two levels: word and sentence representation, followed by a text classifier that acts upon the question representation. To evaluate our model, we build and release the largest publicly available dataset of Islamic questions and answers, along with their topics, for 52 topic categories. We evaluate different state-of-the art deep learning models, both for word and sentence embeddings, comparing recurrent and transformer-based techniques, and performing extensive ablation studies to show the effect of each model choice. Our hierarchical model is based on pre-trained models, taking advantage of the recent advancement of transfer learning techniques, focused on Arabic language.

Deep Learning in Radiation Oncology

  • Cheon, Wonjoong;Kim, Haksoo;Kim, Jinsung
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.111-123
    • /
    • 2020
  • Deep learning (DL) is a subset of machine learning and artificial intelligence that has a deep neural network with a structure similar to the human neural system and has been trained using big data. DL narrows the gap between data acquisition and meaningful interpretation without explicit programming. It has so far outperformed most classification and regression methods and can automatically learn data representations for specific tasks. The application areas of DL in radiation oncology include classification, semantic segmentation, object detection, image translation and generation, and image captioning. This article tries to understand what is the potential role of DL and what can be more achieved by utilizing it in radiation oncology. With the advances in DL, various studies contributing to the development of radiation oncology were investigated comprehensively. In this article, the radiation treatment process was divided into six consecutive stages as follows: patient assessment, simulation, target and organs-at-risk segmentation, treatment planning, quality assurance, and beam delivery in terms of workflow. Studies using DL were classified and organized according to each radiation treatment process. State-of-the-art studies were identified, and the clinical utilities of those researches were examined. The DL model could provide faster and more accurate solutions to problems faced by oncologists. While the effect of a data-driven approach on improving the quality of care for cancer patients is evidently clear, implementing these methods will require cultural changes at both the professional and institutional levels. We believe this paper will serve as a guide for both clinicians and medical physicists on issues that need to be addressed in time.