• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.032 seconds

A Study on Deep Learning Methodology for Bigdata Mining from Smart Farm using Heterogeneous Computing (스마트팜 빅데이터 분석을 위한 이기종간 심층학습 기법 연구)

  • Min, Jae-Ki;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.162-162
    • /
    • 2017
  • 구글에서 공개한 Tensorflow를 이용한 여러 학문 분야의 연구가 활발하다. 농업 시설환경을 대상으로 한 빅데이터의 축적이 증가함과 아울러 실효적인 정보 획득을 위한 각종 데이터 분석 및 마이닝 기법에 대한 연구 또한 활발한 상황이다. 한편, 타 분야의 성공적인 심층학습기법 응용사례에 비하여 농업 분야에서의 응용은 초기 성장 단계라 할 수 있다. 이는 농업 현장에서 취득한 정보의 난해성 및 완성도 높은 생육/환경 모델링 정보의 부재로 실효적인 전과정 처리 기술 도출에 소요되는 시간, 비용, 연구 환경이 상대적으로 부족하기 때문일 것이다. 특히, 센서 기반 데이터 취득 기술 증가에 따라 비약적으로 방대해진 수집 데이터를 시간 복잡도가 높은 심층 학습 모델링 연산에 기계적으로 단순 적용할 경우 시간 효율적인 측면에서 성공적인 결과 도출에 애로가 있을 것이다. 매우 높은 시간 복잡도를 해결하기 위하여 제시된 하드웨어 가속 기능의 경우 일부 개발환경에 국한이 되어 있다. 일례로, 구글의 Tensorflow는 오픈소스 기반 병렬 클러스터링 기술인 MPICH를 지원하는 알고리즘을 공개하지 않고 있다. 따라서, 본 연구에서는 심층학습 기법 연구에 있어서, 예상 가능한 다양한 자원을 활용하여 최대한 연산의 결과를 빨리 도출할 수 있는 하드웨어적인 접근 방법을 모색하였다. 호스트에서 수행하는 일방적인 학습 알고리즘과 달리 이기종간 심층 학습이 가능하기 위해선 우선, NFS(Network File System)를 이용하여 데이터 계층이 상호 연결이 되어야 한다. 이를 위해서 고속 네트워크를 기반으로 한 NFS의 이용이 필수적이다. 둘째로 제한된 자원의 한계를 극복하기 위한 메모 공유 라이브러리가 필요하다. 셋째로 이기종간 프로세서에 최적화된 병렬 처리용 컴파일러를 이용해야 한다. 가장 중요한 부분은 이기종간의 처리 능력에 따른 작업을 고르게 분배할 수 있는 작업 스케쥴링이 수행되어야 하며, 이는 처리하고자 하는 데이터의 형태에 따라 매우 가변적이므로 해당 데이터 도메인에 대한 엄밀한 사전 벤치마킹이 수행되어야 한다. 이러한 요구조건을 대부분 충족하는 Open-CL ver1.2(https://www.khronos.org/opencl/)를 이용하였다. 최신의 Open-CL 버전은 2.2이나 본 연구를 위하여 준비한 4가지 이기종 시스템에서 모두 공통적으로 지원하는 버전은 1.2이다. 실험적으로 선정된 4가지 이기종 시스템은 1) Windows 10 Pro, 2) Linux-Ubuntu 16.04.4 LTS-x86_64, 3) MAC OS X 10.11 4) Linux-Ubuntu 16.04.4 LTS-ARM Cortext-A15 이다. 비교 분석을 위하여 NVIDIA 사에서 제공하는 Pascal Titan X 2식을 SLI로 구성한 시스템을 준비하였다. 개별 시스템에서 별도로 컴파일 된 바이너리의 이름을 통일하고, 개별 시스템의 코어수를 동일하게 균등 배분하여 100 Hz의 데이터로 입력이 되는 온도 정보와 조도 정보를 입력으로 하고 이를 습도정보에 Linear Gradient Descent Optimizer를 이용하여 Epoch 10,000회의 학습을 수행하였다. 4종의 이기종에서 총 32개의 코어를 이용한 학습에서 17초 내외로 연산 수행을 마쳤으나, 비교 시스템에서는 11초 내외로 연산을 마치는 결과가 나왔다. 기보유 하드웨어의 적절한 활용이 가능한 심층학습 기법에 대한 연구를 지속할 것이다

  • PDF

A LSTM Based Method for Photovoltaic Power Prediction in Peak Times Without Future Meteorological Information (미래 기상정보를 사용하지 않는 LSTM 기반의 피크시간 태양광 발전량 예측 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.4
    • /
    • pp.119-133
    • /
    • 2019
  • Recently, the importance prediction of photovoltaic power (PV) is considered as an essential function for scheduling adjustments, deciding on storage size, and overall planning for stable operation of PV facility systems. In particular, since most of PV power is generated in peak time, PV power prediction in a peak time is required for the PV system operators that enable to maximize revenue and sustainable electricity quantity. Moreover, Prediction of the PV power output in peak time without meteorological information such as solar radiation, cloudiness, the temperature is considered a challenging problem because it has limitations that the PV power was predicted by using predicted uncertain meteorological information in a wide range of areas in previous studies. Therefore, this paper proposes the LSTM (Long-Short Term Memory) based the PV power prediction model only using the meteorological, seasonal, and the before the obtained PV power before peak time. In this paper, the experiment results based on the proposed model using the real-world data shows the superior performance, which showed a positive impact on improving the PV power in a peak time forecast performance targeted in this study.

Web Search Behavior Analysis Based on the Self-bundling Query Method (웹검색 행태 연구 - 사용자가 스스로 쿼리를 뭉치는 방법으로 -)

  • Lee, Joong-Seek
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.45 no.2
    • /
    • pp.209-228
    • /
    • 2011
  • Web search behavior has evolved. People now search using many diverse information devices in various situations. To monitor these scattered and shifting search patterns, an improved way of learning and analysis are needed. Traditional web search studies relied on the server transaction logs and single query instance analysis. Since people use multiple smart devices and their searching occurs intermittently through a day, a bundled query research could look at the whole context as well as penetrating search needs. To observe and analyze bundled queries, we developed a proprietary research software set including a log catcher, query bundling tool, and bundle monitoring tool. In this system, users' daily search logs are sent to our analytic server, every night the users need to log on our bundling tool to package his/her queries, a built in web survey collects additional data, and our researcher performs deep interviews on a weekly basis. Out of 90 participants in the study, it was found that a normal user generates on average 4.75 query bundles a day, and each bundle contains 2.75 queries. Query bundles were categorized by; Query refinement vs. Topic refinement and 9 different sub-categories.

A Qualitative Study on Educational Experiences of Students with Multicultural Family Backgrounds (이민자녀들의 한국교육경험에 관한 질적 연구)

  • Sim, Mi-Kyung
    • Korean Journal of Comparative Education
    • /
    • v.24 no.5
    • /
    • pp.71-95
    • /
    • 2014
  • This is a pilot study of multifaceted longitudinal research project to explore educational experiences of students with multicultural family backgrounds in Korea. Especially for this pilot study, I selected three foreign-born immigrant youths and tried to explore how these youths describe constraints of their learning experience in different culture. The data for this study were mainly collected through qualitative research methods. For a better understanding of the research participants' perceptions in this study, narrative inquiry and series of semi-structured in-depth interviews were conducted for a period of four months which corresponds to one semester of school system in Korea. As a result, this study found that there is an urgent need to establish a systemic and developmentaly appropriate language education programs that ensure educating the language to the foreign-born immigrant youths because their academic achievement, interpersonal relationships, and future depend greatly on the fluency of Korean language. It was also found that it is necessary to take appropriate educational actions in supporting alternative schools where the foreign-born immigrant youths can fully and seriously considered as a whole person. Although this study has some limitations in examining every single aspect of the current state of education of students with multicultural backgrounds in Korea, it provides deep insight into some of their initial educational experiences and proposes several ways to improve these educational programs for them.

An Empirical Study on Predictive Modeling to enhance the Product-Technical Roadmap (제품-기술로드맵 개발을 강화하기 위한 예측모델링에 관한 실증 연구)

  • Park, Kigon;Kim, YoungJun
    • Journal of Technology Innovation
    • /
    • v.29 no.4
    • /
    • pp.1-30
    • /
    • 2021
  • Due to the recent development of system semiconductors, technical innovation for the electric devices of the automobile industry is rapidly progressing. In particular, the electric device of automobiles is accelerating technology development competition among automobile parts makers, and the development cycle is also changing rapidly. Due to these changes, the importance of strategic planning for R&D is further strengthened. Due to the paradigm shift in the automobile industry, the Product-Technical Roadmap (P/TRM), one of the R&D strategies, analyzes technology forecasting, technology level evaluation, and technology acquisition method (Make/Collaborate/Buy) at the planning stage. The product-technical roadmap is a tool that identifies customer needs of products and technologies, selects technologies and sets development directions. However, most companies are developing the product-technical roadmap through a qualitative method that mainly relies on the technical papers, patent analysis, and expert Delphi method. In this study, empirical research was conducted through simulations that can supplement and strengthen the product-technical roadmap centered on the automobile industry by fusing Gartner's hype cycle, cumulative moving average-based data preprocessing, and deep learning (LSTM) time series analysis techniques. The empirical study presented in this paper can be used not only in the automobile industry but also in other manufacturing fields in general. In addition, from the corporate point of view, it is considered that it will become a foundation for moving forward as a leading company by providing products to the market in a timely manner through a more accurate product-technical roadmap, breaking away from the roadmap preparation method that has relied on qualitative methods.

Development of a method for urban flooding detection using unstructured data and deep learing (비정형 데이터와 딥러닝을 활용한 내수침수 탐지기술 개발)

  • Lee, Haneul;Kim, Hung Soo;Kim, Soojun;Kim, Donghyun;Kim, Jongsung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1233-1242
    • /
    • 2021
  • In this study, a model was developed to determine whether flooding occurred using image data, which is unstructured data. CNN-based VGG16 and VGG19 were used to develop the flood classification model. In order to develop a model, images of flooded and non-flooded images were collected using web crawling method. Since the data collected using the web crawling method contains noise data, data irrelevant to this study was primarily deleted, and secondly, the image size was changed to 224×224 for model application. In addition, image augmentation was performed by changing the angle of the image for diversity of image. Finally, learning was performed using 2,500 images of flooding and 2,500 images of non-flooding. As a result of model evaluation, the average classification performance of the model was found to be 97%. In the future, if the model developed through the results of this study is mounted on the CCTV control center system, it is judged that the respons against flood damage can be done quickly.

A Study on Similar Trademark Search Model Using Convolutional Neural Networks (합성곱 신경망(Convolutional Neural Network)을 활용한 지능형 유사상표 검색 모형 개발)

  • Yoon, Jae-Woong;Lee, Suk-Jun;Song, Chil-Yong;Kim, Yeon-Sik;Jung, Mi-Young;Jeong, Sang-Il
    • Management & Information Systems Review
    • /
    • v.38 no.3
    • /
    • pp.55-80
    • /
    • 2019
  • Recently, many companies improving their management performance by building a powerful brand value which is recognized for trademark rights. However, as growing up the size of online commerce market, the infringement of trademark rights is increasing. According to various studies and reports, cases of foreign and domestic companies infringing on their trademark rights are increased. As the manpower and the cost required for the protection of trademark are enormous, small and medium enterprises(SMEs) could not conduct preliminary investigations to protect their trademark rights. Besides, due to the trademark image search service does not exist, many domestic companies have a problem that investigating huge amounts of trademarks manually when conducting preliminary investigations to protect their rights of trademark. Therefore, we develop an intelligent similar trademark search model to reduce the manpower and cost for preliminary investigation. To measure the performance of the model which is developed in this study, test data selected by intellectual property experts was used, and the performance of ResNet V1 101 was the highest. The significance of this study is as follows. The experimental results empirically demonstrate that the image classification algorithm shows high performance not only object recognition but also image retrieval. Since the model that developed in this study was learned through actual trademark image data, it is expected that it can be applied in the real industrial environment.

YOLO Model FPS Enhancement Method for Determining Human Facial Expression based on NVIDIA Jetson TX1 (NVIDIA Jetson TX1 기반의 사람 표정 판별을 위한 YOLO 모델 FPS 향상 방법)

  • Bae, Seung-Ju;Choi, Hyeon-Jun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.467-474
    • /
    • 2019
  • In this paper, we propose a novel method to improve FPS while maintaining the accuracy of YOLO v2 model in NVIDIA Jetson TX1. In general, in order to reduce the amount of computation, a conversion to an integer operation or reducing the depth of a network have been used. However, the accuracy of recognition can be deteriorated. So, we use methods to reduce computation and memory consumption through adjustment of the filter size and integrated computation of the network The first method is to replace the $3{\times}3$ filter with a $1{\times}1$ filter, which reduces the number of parameters to one-ninth. The second method is to reduce the amount of computation through CBR (Convolution-Add Bias-Relu) among the inference acceleration functions of TensorRT, and the last method is to reduce memory consumption by integrating repeated layers using TensorRT. For the simulation results, although the accuracy is decreased by 1% compared to the existing YOLO v2 model, the FPS has been improved from the existing 3.9 FPS to 11 FPS.

The Effect of Changes in Airbnb Host's Marketing Strategy on Listing Performance in the COVID-19 Pandemic (COVID-19 팬데믹에서 Airbnb 호스트의 마케팅 전략의 변화가 공유성과에 미치는 영향)

  • Kim, So Yeong;Sim, Ji Hwan;Chung, Yeo Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.1-27
    • /
    • 2021
  • The entire tourism industry is being hit hard by the COVID-19 as a global pandemic. Accommodation sharing services such as Airbnb, which have recently expanded due to the spread of the sharing economy, are particularly affected by the pandemic because transactions are made based on trust and communication between consumer and supplier. As the pandemic situation changes individuals' perceptions and behavior of travel, strategies for the recovery of the tourism industry have been discussed. However, since most studies present macro strategies in terms of traditional lodging providers and the government, there is a significant lack of discussion on differentiated pandemic response strategies considering the peculiarity of the sharing economy centered on peer-to-peer transactions. This study discusses the marketing strategy for individual hosts of Airbnb during COVID-19. We empirically analyze the effect of changes in listing descriptions posted by the Airbnb hosts on listing performance after COVID-19 was outbroken. We extract nine aspects described in the listing descriptions using the Attention-Based Aspect Extraction model, which is a deep learning-based aspect extraction method. We model the effect of aspect changes on listing performance after the COVID-19 by observing the frequency of each aspect appeared in the text. In addition, we compare those effects across the types of Airbnb listing. Through this, this study presents an idea for a pandemic crisis response strategy that individual service providers of accommodation sharing services can take depending on the listing type.

Utilization of UAV and GIS for Efficient Agricultural Area Survey (효율적인 농업면적 조사를 위한 무인항공기와 GIS의 활용)

  • Jeong, Woo-Chul;Kim, Sung-Bo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.201-207
    • /
    • 2020
  • In this study, the practicality of unmanned aerial vehicle photography information was identified. Therefore, a total of four consecutive surveys were conducted on the field-level survey areas among the areas subject to photography using unmanned aerial vehicles, and the changes in crop conditions were analyzed using pictures of unmanned aerial vehicles taken during each survey. It is appropriate to collect and utilize photographic information by directly taking pictures of the survey area according to the time of the on-site survey using unmanned aerial vehicles in the field layer, which is an area where many changes in topography, crop vegetation, and crop types are expected. And it turned out that it was appropriate to utilize satellite images in consideration of economic and efficient aspects in relatively unchanged rice paddies and facilities. If the survey area is well equipped with systems for crop cultivation, deep learning can be utilized in real time by utilizing libraries after obtaining photographic data for a certain area using unmanned aircraft in the future. Through this process, it is believed that it can be used to analyze the overall crop and shipment volume by identifying the crop status and surveying the quantity per unit area.