• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.036 seconds

A Study on Image Annotation Automation Process using SHAP for Defect Detection (SHAP를 이용한 이미지 어노테이션 자동화 프로세스 연구)

  • Jin Hyeong Jung;Hyun Su Sim;Yong Soo Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.76-83
    • /
    • 2023
  • Recently, the development of computer vision with deep learning has made object detection using images applicable to diverse fields, such as medical care, manufacturing, and transportation. The manufacturing industry is saving time and money by applying computer vision technology to detect defects or issues that may occur during the manufacturing and inspection process. Annotations of collected images and their location information are required for computer vision technology. However, manually labeling large amounts of images is time-consuming, expensive, and can vary among workers, which may affect annotation quality and cause inaccurate performance. This paper proposes a process that can automatically collect annotations and location information for images using eXplainable AI, without manual annotation. If applied to the manufacturing industry, this process is thought to save the time and cost required for image annotation collection and collect relatively high-quality annotation information.

Automated structural modal analysis method using long short-term memory network

  • Jaehyung Park;Jongwon Jung;Seunghee Park;Hyungchul Yoon
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.45-56
    • /
    • 2023
  • Vibration-based structural health monitoring is used to ensure the safety of structures by installing sensors in structures. The peak picking method, one of the applications of vibration-based structural health monitoring, is a method that analyze the dynamic characteristics of a structure using the peaks of the frequency response function. However, the results may vary depending on the person predicting the peak point; further, the method does not predict the exact peak point in the presence of noise. To overcome the limitations of the existing peak picking methods, this study proposes a new method to automate the modal analysis process by utilizing long short-term memory, a type of recurrent neural network. The method proposed in this study uses the time series data of the frequency response function directly as the input of the LSTM network. In addition, the proposed method improved the accuracy by using the phase as well as amplitude information of the frequency response function. Simulation experiments and lab-scale model experiments are performed to verify the performance of the LSTM network developed in this study. The result reported a modal assurance criterion of 0.8107, and it is expected that the dynamic characteristics of a civil structure can be predicted with high accuracy using data without experts.

'Knowing' with AI in construction - An empirical insight

  • Ramalingham, Shobha;Mossman, Alan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.686-693
    • /
    • 2022
  • Construction is a collaborative endeavor. The complexity in delivering construction projects successfully is impacted by the effective collaboration needs of a multitude of stakeholders throughout the project life-cycle. Technologies such as Building Information Modelling and relational project delivery approaches such as Alliancing and Integrated Project Delivery have developed to address this conundrum. However, with the onset of the pandemic, the digital economy has surged world-wide and advances in technology such as in the areas of machine learning (ML) and Artificial Intelligence (AI) have grown deep roots across specializations and domains to the point of matching its capabilities to the human mind. Several recent studies have both explored the role of AI in the construction process and highlighted its benefits. In contrast, literature in the organization studies field has highlighted the fear that tasks currently done by humans will be done by AI in future. Motivated by these insights and with the understanding that construction is a labour intensive sector where knowledge is both fragmented and predominantly tacit in nature, this paper explores the integration of AI in construction processes across project phases from planning, scheduling, execution and maintenance operations using literary evidence and experiential insights. The findings show that AI can complement human skills rather than provide a substitute for them. This preliminary study is expected to be a stepping stone for further research and implementation in practice.

  • PDF

Development of Camera-based Character Creation and Motion Control System using StyleGAN Deep Learning Technology (StyleGAN 딥러닝 기술을 활용한 카메라 기반 캐릭터 생성 및 모션 제어 시스템 개발)

  • Lee, Jeong-Hun;Kim, Ju-Hyeong;Shin, Dong-hyeon;Yang, Jae-hyeong;Chang, Moon-soo
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.934-936
    • /
    • 2022
  • 현재 사회적인(COVID-19) 영향으로 메타버스에 대한 수요가 급증하였지만, 메타버스 플랫폼 진입을 지원하는 XR(AR/VR) 장비의 높은 가격대와 전문성 요구로 폭넓은 수요층을 포괄하기 어려운 상황이다. 본 논문에서는 이러한 수요층의 어려움을 개선하고자 웹 캠이나 스마트폰 카메라로 생성된 개인의 사진 이미지를 StyleGAN 딥러닝 기술과 접목시켜 캐릭터를 생성해 Mediapipe를 활용하여 모션 측정 및 제어를 처리하는 서비스를 제안하여 메타버스 시장의 대중화에 기여하고자 한다.

Enhancing Wind Speed and Wind Power Forecasting Using Shape-Wise Feature Engineering: A Novel Approach for Improved Accuracy and Robustness

  • Mulomba Mukendi Christian;Yun Seon Kim;Hyebong Choi;Jaeyoung Lee;SongHee You
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.

Density Change Adaptive Congestive Scene Recognition Network

  • Jun-Hee Kim;Dae-Seok Lee;Suk-Ho Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.147-153
    • /
    • 2023
  • In recent times, an absence of effective crowd management has led to numerous stampede incidents in crowded places. A crucial component for enhancing on-site crowd management effectiveness is the utilization of crowd counting technology. Current approaches to analyzing congested scenes have evolved beyond simple crowd counting, which outputs the number of people in the targeted image to a density map. This development aligns with the demands of real-life applications, as the same number of people can exhibit vastly different crowd distributions. Therefore, solely counting the number of crowds is no longer sufficient. CSRNet stands out as one representative method within this advanced category of approaches. In this paper, we propose a crowd counting network which is adaptive to the change in the density of people in the scene, addressing the performance degradation issue observed in the existing CSRNet(Congested Scene Recognition Network) when there are changes in density. To overcome the weakness of the CSRNet, we introduce a system that takes input from the image's information and adjusts the output of CSRNet based on the features extracted from the image. This aims to improve the algorithm's adaptability to changes in density, supplementing the shortcomings identified in the original CSRNet.

Key-point detection of fruit for automatic harvesting of oriental melon (참외 자동 수확을 위한 과일 주요 지점 검출)

  • Seung-Woo Kang;Jung-Hoon Yun;Yong-Sik Jeong;Kyung-Chul Kim;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • In this study, we suggested a key-point detection method for robot harvesting of oriental melon. Our suggested method could be used to detect the detachment part and major composition of oriental melon. We defined four points (harvesting point, calyx, center, bottom) based on tomato with characteristics similar to those of oriental melon. The evaluation of estimated key-points was conducted by pixel error and PDK (percentage of detected key-point) index. Results showed that the average pixel error was 18.26 ± 16.62 for the x coordinate and 17.74 ± 18.07 for the y coordinate. Considering the resolution of raw images, these pixel errors were not expected to have a serious impact. The PDK score was found to be 89.5% PDK@0.5 on average. It was possible to estimate oriental melon specific key-point. As a result of this research, we believe that the proposed method can contribute to the application of harvesting robot system.

A Study on Code Vulnerability Repair via Large Language Models (대규모 언어모델을 활용한 코드 취약점 리페어)

  • Woorim Han;Miseon Yu;Yunheung Paek
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.757-759
    • /
    • 2024
  • Software vulnerabilities represent security weaknesses in software systems that attackers exploit for malicious purposes, resulting in potential system compromise and data breaches. Despite the increasing prevalence of these vulnerabilities, manual repair efforts by security analysts remain time-consuming. The emergence of deep learning technologies has provided promising opportunities for automating software vulnerability repairs, but existing AIbased approaches still face challenges in effectively handling complex vulnerabilities. This paper explores the potential of large language models (LLMs) in addressing these limitations, examining their performance in code vulnerability repair tasks. It introduces the latest research on utilizing LLMs to enhance the efficiency and accuracy of fixing security bugs.

Evaluating the Effectiveness of an Artificial Intelligence Model for Classification of Basic Volcanic Rocks Based on Polarized Microscope Image (편광현미경 이미지 기반 염기성 화산암 분류를 위한 인공지능 모델의 효용성 평가)

  • Sim, Ho;Jung, Wonwoo;Hong, Seongsik;Seo, Jaewon;Park, Changyun;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.309-316
    • /
    • 2022
  • In order to minimize the human and time consumption required for rock classification, research on rock classification using artificial intelligence (AI) has recently developed. In this study, basic volcanic rocks were subdivided by using polarizing microscope thin section images. A convolutional neural network (CNN) model based on Tensorflow and Keras libraries was self-producted for rock classification. A total of 720 images of olivine basalt, basaltic andesite, olivine tholeiite, trachytic olivine basalt reference specimens were mounted with open nicol, cross nicol, and adding gypsum plates, and trained at the training : test = 7 : 3 ratio. As a result of machine learning, the classification accuracy was over 80-90%. When we confirmed the classification accuracy of each AI model, it is expected that the rock classification method of this model will not be much different from the rock classification process of a geologist. Furthermore, if not only this model but also models that subdivide more diverse rock types are produced and integrated, the AI model that satisfies both the speed of data classification and the accessibility of non-experts can be developed, thereby providing a new framework for basic petrology research.

Automatic Extraction of Hangul Stroke Element Using Faster R-CNN for Font Similarity (글꼴 유사도 판단을 위한 Faster R-CNN 기반 한글 글꼴 획 요소 자동 추출)

  • Jeon, Ja-Yeon;Park, Dong-Yeon;Lim, Seo-Young;Ji, Yeong-Seo;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.953-964
    • /
    • 2020
  • Ever since media contents took over the world, the importance of typography has increased, and the influence of fonts has be n recognized. Nevertheless, the current Hangul font system is very poor and is provided passively, so it is practically impossible to understand and utilize all the shape characteristics of more than six thousand Hangul fonts. In this paper, the characteristics of Hangul font shapes were selected based on the Hangul structure of similar fonts. The stroke element detection training was performed by fine tuning Faster R-CNN Inception v2, one of the deep learning object detection models. We also propose a system that automatically extracts the stroke element characteristics from characters by introducing an automatic extraction algorithm. In comparison to the previous research which showed poor accuracy while using SVM(Support Vector Machine) and Sliding Window Algorithm, the proposed system in this paper has shown the result of 10 % accuracy to properly detect and extract stroke elements from various fonts. In conclusion, if the stroke element characteristics based on the Hangul structural information extracted through the system are used for similar classification, problems such as copyright will be solved in an era when typography's competitiveness becomes stronger, and an automated process will be provided to users for more convenience.