• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.034 seconds

Build a Multi-Sensor Dataset for Autonomous Driving in Adverse Weather Conditions (열악한 환경에서의 자율주행을 위한 다중센서 데이터셋 구축)

  • Sim, Sungdae;Min, Jihong;Ahn, Seongyong;Lee, Jongwoo;Lee, Jung Suk;Bae, Gwangtak;Kim, Byungjun;Seo, Junwon;Choe, Tok Son
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.245-254
    • /
    • 2022
  • Sensor dataset for autonomous driving is one of the essential components as the deep learning approaches are widely used. However, most driving datasets are focused on typical environments such as sunny or cloudy. In addition, most datasets deal with color images and lidar. In this paper, we propose a driving dataset with multi-spectral images and lidar in adverse weather conditions such as snowy, rainy, smoky, and dusty. The proposed data acquisition system has 4 types of cameras (color, near-infrared, shortwave, thermal), 1 lidar, 2 radars, and a navigation sensor. Our dataset is the first dataset that handles multi-spectral cameras in adverse weather conditions. The Proposed dataset is annotated as 2D semantic labels, 3D semantic labels, and 2D/3D bounding boxes. Many tasks are available on our dataset, for example, object detection and driveable region detection. We also present some experimental results on the adverse weather dataset.

Non-invasive evaluation of embryo quality for the selection of transferable embryos in human in vitro fertilization-embryo transfer

  • Jihyun Kim;Jaewang Lee;Jin Hyun Jun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.4
    • /
    • pp.225-238
    • /
    • 2022
  • The ultimate goal of human assisted reproductive technology is to achieve a healthy pregnancy and birth, ideally from the selection and transfer of a single competent embryo. Recently, techniques for efficiently evaluating the state and quality of preimplantation embryos using time-lapse imaging systems have been applied. Artificial intelligence programs based on deep learning technology and big data analysis of time-lapse monitoring system during in vitro culture of preimplantation embryos have also been rapidly developed. In addition, several molecular markers of the secretome have been successfully analyzed in spent embryo culture media, which could easily be obtained during in vitro embryo culture. It is also possible to analyze small amounts of cell-free nucleic acids, mitochondrial nucleic acids, miRNA, and long non-coding RNA derived from embryos using real-time polymerase chain reaction (PCR) or digital PCR, as well as next-generation sequencing. Various efforts are being made to use non-invasive evaluation of embryo quality (NiEEQ) to select the embryo with the best developmental competence. However, each NiEEQ method has some limitations that should be evaluated case by case. Therefore, an integrated analysis strategy fusing several NiEEQ methods should be urgently developed and confirmed by proper clinical trials.

Development of Animal Tracking Method Based on Edge Computing for Harmful Animal Repellent System. (엣지컴퓨팅 기반 유해조수 퇴치 드론의 동물 추적기법 개발)

  • Lee, Seul;Kim, Jun-tae;Lee, Sang-Min;Cho, Soon-jae;Jeong, Seo-hoon;Kim, Hyung Hoon;Shim, Hyun-min
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.224-227
    • /
    • 2020
  • 엣지컴퓨팅 기반 유해조수 퇴치 Drone의 유해조수 추적 기술은 Doppler Sensor를 이용해 사유지에 침입한 유해조수를 인식 후 사용자에게 위험 요소에 대한 알림 서비스를 제공한다. 이후 사용자는 Drone의 Camera와 전용 애플리케이션을 이용해 경작지를 실시간으로 보며 Drone을 조종한다. Camera는 Tensor Flow Object Detection Deep Learning을 적용하여 유해조수를 학습 및 파악, 추적한다. 이후 Drone은 Speaker와 Neo Pixel LED Ring을 이용해 유해조수의 시각과 청각을 자극해 도망을 유도하며 퇴치한다. Tensor Flow object detection을 핵심으로 Drone에 접목했고 이를 위해 전용 애플리케이션을 개발했다.

Detection of Defect Patterns on Wafer Bin Map Using Fully Convolutional Data Description (FCDD) (FCDD 기반 웨이퍼 빈 맵 상의 결함패턴 탐지)

  • Seung-Jun Jang;Suk Joo Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • To make semiconductor chips, a number of complex semiconductor manufacturing processes are required. Semiconductor chips that have undergone complex processes are subjected to EDS(Electrical Die Sorting) tests to check product quality, and a wafer bin map reflecting the information about the normal and defective chips is created. Defective chips found in the wafer bin map form various patterns, which are called defective patterns, and the defective patterns are a very important clue in determining the cause of defects in the process and design of semiconductors. Therefore, it is desired to automatically and quickly detect defective patterns in the field, and various methods have been proposed to detect defective patterns. Existing methods have considered simple, complex, and new defect patterns, but they had the disadvantage of being unable to provide field engineers the evidence of classification results through deep learning. It is necessary to supplement this and provide detailed information on the size, location, and patterns of the defects. In this paper, we propose an anomaly detection framework that can be explained through FCDD(Fully Convolutional Data Description) trained only with normal data to provide field engineers with details such as detection results of abnormal defect patterns, defect size, and location of defect patterns on wafer bin map. The results are analyzed using open dataset, providing prominent results of the proposed anomaly detection framework.

Precise Max-Pooling on Fully Homomorphic Encryption (완전 동형 암호에서의 정밀한 맥스 풀링 연산)

  • Eunsang Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.375-381
    • /
    • 2023
  • Fully homomorphic encryption enables algebraic operations on encrypted data, and recently, methods for approximating non-algebraic operations such as the maximum function have been studied. However, precise approximation of max-pooling operations for four or more numbers have not been researched yet. In this study, we propose a precise max-pooling approximation method using the composition of approximate polynomials of the maximum function and theoretically analyze its precision. Experimental results show that the proposed approximate max-pooling has a small amortized runtime of less than 1ms and high precision that matches the theoretical analysis.

Real-time Abnormal Behavior Analysis System Based on Pedestrian Detection and Tracking (보행자의 검출 및 추적을 기반으로 한 실시간 이상행위 분석 시스템)

  • Kim, Dohun;Park, Sanghyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.25-27
    • /
    • 2021
  • With the recent development of deep learning technology, computer vision-based AI technologies have been studied to analyze the abnormal behavior of objects in image information acquired through CCTV cameras. There are many cases where surveillance cameras are installed in dangerous areas or security areas for crime prevention and surveillance. For this reason, companies are conducting studies to determine major situations such as intrusion, roaming, falls, and assault in the surveillance camera environment. In this paper, we propose a real-time abnormal behavior analysis algorithm using object detection and tracking method.

  • PDF

Development of visitor counter system for disaster situations and marketing based on real-time object recognition technology (재난상황과 마케팅을 위한 실시간 객체인식 기술기반 출입자 카운터시스템 개발)

  • Kim, Young-gwon;Jeong, Jae-hoon;Kim, Jae-hyeon;Kang, Myeung-jin;Kang, Min-sung;Ju, Hui-je;Jang, Woo-hyun;Yun, Tae-jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.187-188
    • /
    • 2021
  • 최근 COVID19 상황에서 생활 속 거리두기가 강조되면서 관광지나 다중이용시설 등의 이용객 수와 밀집도를 파악하는 것이 중요해지고 있다. 따라서, CCTV 영상을 활용하여 저렴한 비용으로 다중이용시설의 출입자수에 대한 정보를 실시간으로 모니터링할 수 있는 시스템이 필요하다. 이를 위해 본 논문에서는 딥러닝 실시간 객체인식기술을 활용한 출입자의 수와 동선을 측정하여 출입자에 대한 통계정보를 웹브라우저를 통해 제공하는 시스템을 개발하였다. 실시간 객체인식기술인 YOLOv4와 YOLOv4-tiny 알고리즘을 Nvidia사의 Jetson AGX Xavier 와 데스크톱PC에 적용하여 각 알고리즘의 FPS와 객체 인식률을 비교 분석 하여 알고리즘을 적용하였다.

  • PDF

MSRP Prediction System Utilizing KERAS and DNN (Keras와 DNN을 이용한 자동차 MSRP 예측 시스템)

  • Kang, Jiwon;Yun, Hyonbin;Lee, Sanghyun;Choi, Hyunho;Moon, Yoo-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.355-356
    • /
    • 2021
  • 본 논문에서는 Python 3의 Keras 모듈을 이용하여 특정 자동차에 대한 최적의 판매자권장소비자가격(MSRP)을 예측하는 시스템을 제안한다. 이 시스템은 2004년에 미국에서 시판된 428종류의 자동차에 대한 정보를 제조사, 차종, 생산지, 엔진 크기, 실린더 수, 시내 주행 시 연비, 고속도로 주행 시 연비, 마력, 차체 무게, 차체 길이의 독립변수를 사용하여 자체적으로 딥러닝한 회귀모델을 통해 특정 지표가 주어진 차량에 대해 종속변수인 판매자권장소비자가격을 예측한다. Optimizer를 adam으로, 학습률을 0.005으로 설정한 경우의 검증 MAE 값이 3842.98로 가장 낮게 산출되었고, 해당 모델의 결과는 예측값과 실제값의 오차율이 ±15% 정도 내외로 예측된 표본의 비율이 약 80.14%로 측정되었다. 위 모델은 향후 신차 가격 결정 및 중고차 시장에서 구매, 판매 결정을 돕는 등 특정 시장 내에서 다양한 자동차의 가치를 판단하기에 유용할 것으로 전망된다.

  • PDF

Construction of CT Image data Automatic Recognition System for Diagnosis of Urinary Stone Based on AI Plaform (인공지능 플랫폼기반 요로결석진단을 위한 CT 영상 데이터 자동판독 시스템 구축)

  • Noh, Si-Hyeong;Lee, Chungsub;Kim, Tae-Hoon;Lee, Yun Oh;Park, Sung Bin;Yoon, Kwon-Ha;Jeong, Chang-Won
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.928-930
    • /
    • 2020
  • 본 논문은 인공지능 플랫폼 기반의 요로결석 진단을 위한 CT 영상 데이터 자동판독 시스템에 대해 기술하고자 한다. 제안한 시스템은 웹 기반의 플랫폼을 기반으로 하며, 인공지능 기반의 진단 알고리즘을 장착하여 빠르게 요로결석 환자의 스크리닝에 목적을 두고 있다. 병원정보시스템의 PACS와 EMR과 연계와 Deep learning 진단 알고리즘을 적용한 요로결석 자동판독 시스템을 개발하였다. 특히, 기 구축된 인공지능 플랫폼을 통해 추출한 데이터셋을 기반으로 진단 알고리즘 개발 방법과 수행 결과를 보인다. 제안한 시스템은 요로결석 진단과 수술여부에 의사결정지원 시스템으로 임상에서 활용될 것으로 기대하고 있다.

Implementation of Face-Touching Action Recognition System based on Deep Learning for Preventing Contagious Diseases (전염병 확산 방지를 위한 딥러닝 기반 얼굴 만지기 행동 인식 연구)

  • Cho, Sungman;Kim, Minjee;Choi, Joonmyeong;Kim, Taehyung;Park, Juyoung;Kim, Namkug
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.630-633
    • /
    • 2020
  • 무의식적인 손-얼굴의 접촉으로 인한 감염의 문제점을 해결하기 위해, 얼굴 만지기 행동을 인식할 필요가 있다. 본 연구는 최근 각광을 받는 딥러닝 기술을 이용하여 비디오 영상에서 얼굴 만지기 행동 인식에 대한 연구이다. 우선, 비디오 영상에서 얼굴 만지기와 관련된 11 가지 행동에 대한 시, 공간적 특징을 컨볼루션 신경망을 통해 추출한다. 추출된 정보는 각 행동 레이블로 인코딩되어 비디오 영상에서 얼굴 만지기 행동을 분류한다. 또한, 3D, 2D 컨볼루션 신경망의 대표 네트워크인 I3D, MobileNet v3에 대해 비교 실험을 진행한다. 제안하는 시스템을 적용하여 인간의 행동을 분류하는 실험을 진행했을 때, 얼굴을 만지는 행동을 99%의 확률로 구분했다. 이 시스템을 이용하여 일반인이 무의식적인 얼굴 만지기 행동에 대해서 정량적으로 또는 적시적으로 인식을 하여, 안전한 위생 습관을 확립하여 감염의 확산방지에 도움을 줄수 있기를 바란다.

  • PDF