In image classification, recent CNNs compete with human performance. However, there are limitations in more general recognition. Herein we deal with indoor images that contain too much information to be directly processed and require information reduction before recognition. To reduce the amount of data processing, typically variational inference or variational Bayesian methods are suggested for object detection. However, these methods suffer from the difficulty of marginalizing over the given space. In this study, we propose an image-text integrated recognition system using active vision based on Spatial Transformer Networks. The system attempts to efficiently sample a partial region of a given image for a given language information. Our experimental results demonstrate a significant improvement over traditional approaches. We also discuss the results of qualitative analysis of sampled images, model characteristics, and its limitations.
The Journal of the Convergence on Culture Technology
/
v.8
no.3
/
pp.571-580
/
2022
Marine deposited waste is a major cause of problems such as a lot of damage and an increase in the estimated amount of garbage due to abandoned fishing grounds caused by ghost fishing. In this paper, we implement a real-time marine deposited waste detection artificial intelligence system to understand the actual conditions of waste fishing gear usage, distribution, loss, and recovery, and study methods for performance improvement. The system was implemented using the yolov5 model, which is an excellent performance model for real-time object detection, and the 'data screening process' and 'class segmentation' method of learning data were applied as performance improvement methods. In conclusion, the object detection results of datasets that do screen unnecessary data or do not subdivide similar items according to characteristics and uses are better than the object recognition results of unscreened datasets and datasets in which classes are subdivided.
KIPS Transactions on Software and Data Engineering
/
v.8
no.5
/
pp.193-204
/
2019
The explosion of data due to the improvement of sensor technology and computing performance has become the basis for analyzing the situation in the industrial fields, and various attempts to detect events based on such data are increasing recently. In particular, sound signals collected from sensors are used as important information to classify events in various application fields as an advantage of efficiently collecting field information at a relatively low cost. However, the performance of sound-event classification in the field cannot be guaranteed if noise can not be removed. That is, in order to implement a system that can be practically applied, robust performance should be guaranteed even in various noise conditions. In this study, we propose a system that can classify the sound event after generating the enhanced sound signal based on the deep learning algorithm. Especially, to remove noise from the sound signal itself, the enhanced sound data against the noise is generated using SEGAN applied to the GAN with a VAE technique. Then, an end-to-end based sound-event classification system is designed to classify the sound events using the enhanced sound signal as input data of CNN structure without a data conversion process. The performance of the proposed method was verified experimentally using sound data obtained from the industrial field, and the f1 score of 99.29% (railway industry) and 97.80% (livestock industry) was confirmed.
The drastic advance of recent deep learning technologies is heavily dependent on training datasets which are essential to train models by themselves with less human efforts. In comparison with the work to design deep learning models, preparing datasets is a long haul; at the moment, in the domain of vision intelligent, datasets are still being made by handwork requiring a lot of time and efforts, where workers need to directly make labels on each image usually with GUI-based labeling tools. In this paper, we overview the current status of vision datasets focusing on what datasets are being shared and how they are prepared with various labeling tools. Particularly, in order to relieve the repetitive and tiring labeling work, we present an interactive smart image annotating system with which the annotation work can be transformed from the direct human-only manual labeling to a correction-after-checking by means of a support of automatic labeling. In an experiment, we show that automatic labeling can greatly improve the productivity of datasets especially reducing time and efforts to specify regions of objects found in images. Finally, we discuss critical issues that we faced in the experiment to our annotation system and describe future work to raise the productivity of image datasets creation for accelerating AI technology.
Kwon, Hee Sung;Song, Ah Ram;Jung, Se Jung;Lee, Won Hee
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.40
no.5
/
pp.367-380
/
2022
In this study, the periodic and simplified update and production way of the ECVAM (Environmental Conservation Value Assessment Map) was presented through the classification of environmental values using KOMPSAT-3A satellite imagery and land cover map. ECVAM is a map that evaluates the environmental value of the country in five stages based on 62 legal evaluation items and 8 environmental and ecological evaluation items, and is provided on two scales: 1:25000 and 1:5000. However, the 1:5000 scale environmental assessment map is being produced and serviced with a slow renewal cycle of one year due to various constraints such as the absence of reference materials and different production years. Therefore, in this study, one of the deep learning techniques, KOMPSAT-3A satellite image, SI (Spectral Indices), and land cover map were used to conduct this study to confirm the possibility of establishing an environmental assessment map. As a result, the accuracy was calculated to be 87.25% and 85.88%, respectively. Through the results of the study, it was possible to confirm the possibility of constructing an environmental assessment map using satellite imagery, optical index, and land cover classification.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.5
/
pp.7-15
/
2022
Since the direct and indirect damage caused by the fire in the underground utility tunnel will cause great damage to society as a whole, it is necessary to make efforts to prevent and control it in advance. The most of the fires that occur in cables are caused by short circuits, earth leakage, ignition due to over-current, overheating of conductor connections, and ignition due to sparks caused by breakdown of insulators. In order to find the cause of fire at an early stage due to the characteristics of the underground utility tunnel and to prevent disasters and safety accidents, we are constantly managing it with a detection system using image analysis and making efforts. Among them, a case of developing a fire detection system using CCTV-based deep learning image analysis technology has been reported. However, CCTV needs to be supplemented because there are blind spots. Therefore, we would like to develop a high-performance acoustic-based deep learning model that can prevent fire by detecting the spark sound before spark occurs. In this study, we propose a method that can collect sound in underground utility tunnel environments using microphone sensor through development and experiment of prototype module. After arranging an acoustic sensor in the underground utility tunnel with a lot of condensation, it verifies whether data can be collected in real time without malfunction.
In the global era, the importance of imported food safety management is increasing. Address information of overseas food companies is key information for imported food safety management, and must be verified for prompt response and follow-up management in the event of a food risk. However, because each country's address system is different, one verification system cannot verify the addresses of all countries. Also, the purpose of address verification may be different depending on the field used. In this paper, we deal with the problem of classifying a given overseas food business address into the administrative district level of the country. This is because, in the event of harm to imported food, it is necessary to find the administrative district level from the address of the relevant company, and based on this trace the food distribution route or take measures to ban imports. However, in some countries the administrative district level name is omitted from the address, and the same place name is used repeatedly in several administrative district levels, so it is not easy to accurately classify the administrative district level from the address. In this study we propose a deep learning-based administrative district level classification model suitable for this case, and verify the actual address data of overseas food companies. Specifically, a method of training using a label powerset in a multi-label classification model is used. To verify the proposed method, the accuracy was verified for the addresses of overseas manufacturing companies in Ecuador and Vietnam registered with the Ministry of Food and Drug Safety, and the accuracy was improved by 28.1% and 13%, respectively, compared to the existing classification model.
Research on restaurant recommender systems has been proposed due to the development of the food service industry and the increasing demand for restaurants. Existing restaurant recommendation studies extracted consumer preference information through quantitative information or online review sensitivity analysis, but there is a limitation that it cannot reflect consumer semantic preference information. In addition, there is a lack of recommendation research that reflects the detailed attributes of restaurants. To solve this problem, this study proposed a model that can learn the interaction between consumer preferences and restaurant attributes by applying deep learning techniques. First, the convolutional neural network was applied to online reviews to extract semantic preference information from consumers, and embedded techniques were applied to restaurant information to extract detailed attributes of restaurants. Finally, the interaction between consumer preference and restaurant attributes was learned through the element-wise products to predict the consumer preference rating. Experiments using an online review of Yelp.com to evaluate the performance of the proposed model in this study confirmed that the proposed model in this study showed excellent recommendation performance. By proposing a customized restaurant recommendation system using big data from the restaurant industry, this study expects to provide various academic and practical implications.
Journal of Korean Tunnelling and Underground Space Association
/
v.26
no.4
/
pp.365-384
/
2024
The development of scanning technology is accelerating for safer and more efficient automated inspection than human-based inspection. Research on automatically detecting facility damage from images collected using computer vision technology is also increasing. The pixel size, quality, and quantity of an image can affect the performance of deep learning or image processing for automatic damage detection. This study is a basic to acquire high-quality raw image data and camera performance of a mobile tunnel scanning system for automatic detection of damage based on deep learning, and proposes a method to quantitatively evaluate image quality. A test chart was attached to a panel device capable of simulating a moving speed of 40 km/h, and an indoor test was performed using the international standard ISO 12233 method. Existing image quality evaluation methods were applied to evaluate the quality of images obtained in indoor experiments. It was determined that the shutter speed of the camera is closely related to the motion blur that occurs in the image. Modulation transfer function (MTF), one of the image quality evaluation method, can objectively evaluate image quality and was judged to be consistent with visual observation.
Super-resolution is a technique used to reconstruct an image with low-resolution into that of high-resolution. Recently, deep-learning based super resolution has become the mainstream, and applications of these methods are widely used in the remote sensing field. In this paper, we propose a super-resolution method based on the deep back-projection network model to improve the satellite image resolution by the factor of four. In the process, we customized the loss function with the edge loss to result in a more detailed feature of the boundary of each object and to improve the stability of the model training using generative adversarial network based on Wasserstein distance loss. Also, we have applied the detail preserving image down-scaling method to enhance the naturalness of the training output. Finally, by including the modified-residual learning with a panchromatic feature in the final step of the training process. Our proposed method is able to reconstruct fine features and high frequency information. Comparing the results of our method with that of the others, we propose that the super-resolution method improves the sharpness and the clarity of WorldView-3 and KOMPSAT-2 images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.