• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.029 seconds

Image Restoration using GAN (적대적 생성신경망을 이용한 손상된 이미지의 복원)

  • Moon, ChanKyoo;Uh, YoungJung;Byun, Hyeran
    • Journal of Broadcast Engineering
    • /
    • v.23 no.4
    • /
    • pp.503-510
    • /
    • 2018
  • Restoring of damaged images is a fundamental problem that was attempted before digital image processing technology appeared. Various algorithms for reconstructing damaged images have been introduced. However, the results show inferior restoration results compared with manual restoration. Recent developments of DNN (Deep Neural Network) have introduced various studies that apply it to image restoration. However, if the wide area is damaged, it can not be solved by a general interpolation method. In this case, it is necessary to reconstruct the damaged area through contextual information of surrounding images. In this paper, we propose an image restoration network using a generative adversarial network (GAN). The proposed system consists of image generation network and discriminator network. The proposed network is verified through experiments that it is possible to recover not only the natural image but also the texture of the original image through the inference of the damaged area in restoring various types of images.

Using 3D Deep Convolutional Neural Network with MRI Biomarker patch Images for Alzheimer's Disease Diagnosis (치매 진단을 위한 MRI 바이오마커 패치 영상 기반 3차원 심층합성곱신경망 분류 기술)

  • Yun, Joo Young;Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.940-952
    • /
    • 2020
  • The Alzheimer's disease (AD) is a neurodegenerative disease commonly found in the elderly individuals. It is one of the most common forms of dementia; patients with AD suffer from a degradation of cognitive abilities over time. To correctly diagnose AD, compuated-aided system equipped with automatic classification algorithm is of great importance. In this paper, we propose a novel deep learning based classification algorithm that takes advantage of MRI biomarker images including brain areas of hippocampus and cerebrospinal fluid for the purpose of improving the AD classification performance. In particular, we develop a new approach that effectively applies MRI biomarker patch images as input to 3D Deep Convolution Neural Network. To integrate multiple classification results from multiple biomarker patch images, we proposed the effective confidence score fusion that combine classification scores generated from soft-max layer. Experimental results show that AD classification performance can be considerably enhanced by using our proposed approach. Compared to the conventional AD classification approach relying on entire MRI input, our proposed method can improve AD classification performance of up to 10.57% thanks to using biomarker patch images. Moreover, the proposed method can attain better or comparable AD classification performances, compared to state-of-the-art methods.

Study on Cochlodinium polykrikoides Red tide Prediction using Deep Neural Network under Imbalanced Data (심층신경망을 활용한 Cochlodinium polykrikoides 적조 발생 예측 연구)

  • Bak, Su-Ho;Jeong, Min-Ji;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Kim, Na-Kyeong;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1161-1170
    • /
    • 2019
  • In this study, we propose a model for predicting Cochlodinium polykrikoides red tide occurrence using deep neural networks. A deep neural network with eight hidden layers was constructed to predict red tide occurrence. The 59 marine and meteorological factors were extracted and used for neural network model training using satellite reanalysis data and meteorological model data. The red tide occurred in the entire dataset is very small compared to the case of no red tide, resulting in an unbalanced data problem. In this study, we applied over sampling with adding noise based data augmentation to solve this problem. As a result of evaluating the accuracy of the model using test data, the accuracy was about 97%.

Analysis of Pressure Ulcer Nursing Records with Artificial Intelligence-based Natural Language Processing (인공지능 기반 자연어처리를 적용한 욕창간호기록 분석)

  • Kim, Myoung Soo;Ryu, Jung-Mi
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.365-372
    • /
    • 2021
  • The purpose of this study was to examine the statements characteristics of the pressure ulcer nursing record by natural langage processing and assess the prediction accuracy for each pressure ulcer stage. Nursing records related to pressure ulcer were analyzed using descriptive statistics, and word cloud generators (http://wordcloud.kr) were used to examine the characteristics of words in the pressure ulcer prevention nursing records. The accuracy ratio for the pressure ulcer stage was calculated using deep learning. As a result of the study, the second stage and the deep tissue injury suspected were 23.1% and 23.0%, respectively, and the most frequent key words were erythema, blisters, bark, area, and size. The stages with high prediction accuracy were in the order of stage 0, deep tissue injury suspected, and stage 2. These results suggest that it can be developed as a clinical decision support system available to practice for nurses at the pressure ulcer prevention care.

Case study of AI art generator using artificial intelligence (인공지능을 활용한 AI 예술 창작도구 사례 연구)

  • Chung, Jiyun
    • Trans-
    • /
    • v.13
    • /
    • pp.117-140
    • /
    • 2022
  • Recently, artificial intelligence technology is being used throughout the industry. Currently, Currently, AI art generators are used in the NFT industry, and works using them have been exhibited and sold. AI art generators in the art field include Gated Photos, Google Deep Dream, Sketch-RNN, and Auto Draw. AI art generators in the music field are Beat Blender, Google Doodle Bach, AIVA, Duet, and Neural Synth. The characteristics of AI art generators are as follows. First, AI art generator in the art field are being used to create new works based on existing work data. Second, it is possible to quickly and quickly derive creative results to provide ideas to creators, or to implement various creative materials. In the future, AI art generators are expected to have a great influence on content planning and production such as visual art, music composition, literature, and movie.

Stacked Sparse Autoencoder-DeepCNN Model Trained on CICIDS2017 Dataset for Network Intrusion Detection (네트워크 침입 탐지를 위해 CICIDS2017 데이터셋으로 학습한 Stacked Sparse Autoencoder-DeepCNN 모델)

  • Lee, Jong-Hwa;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.24 no.2
    • /
    • pp.24-34
    • /
    • 2021
  • Service providers using edge computing provide a high level of service. As a result, devices store important information in inner storage and have become a target of the latest cyberattacks, which are more difficult to detect. Although experts use a security system such as intrusion detection systems, the existing intrusion systems have low detection accuracy. Therefore, in this paper, we proposed a machine learning model for more accurate intrusion detections of devices in edge computing. The proposed model is a hybrid model that combines a stacked sparse autoencoder (SSAE) and a convolutional neural network (CNN) to extract important feature vectors from the input data using sparsity constraints. To find the optimal model, we compared and analyzed the performance as adjusting the sparsity coefficient of SSAE. As a result, the model showed the highest accuracy as a 96.9% using the sparsity constraints. Therefore, the model showed the highest performance when model trains only important features.

Visual Model of Pattern Design Based on Deep Convolutional Neural Network

  • Jingjing Ye;Jun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.311-326
    • /
    • 2024
  • The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.

Conditional Generative Adversarial Network based Collaborative Filtering Recommendation System (Conditional Generative Adversarial Network(CGAN) 기반 협업 필터링 추천 시스템)

  • Kang, Soyi;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.157-173
    • /
    • 2021
  • With the development of information technology, the amount of available information increases daily. However, having access to so much information makes it difficult for users to easily find the information they seek. Users want a visualized system that reduces information retrieval and learning time, saving them from personally reading and judging all available information. As a result, recommendation systems are an increasingly important technologies that are essential to the business. Collaborative filtering is used in various fields with excellent performance because recommendations are made based on similar user interests and preferences. However, limitations do exist. Sparsity occurs when user-item preference information is insufficient, and is the main limitation of collaborative filtering. The evaluation value of the user item matrix may be distorted by the data depending on the popularity of the product, or there may be new users who have not yet evaluated the value. The lack of historical data to identify consumer preferences is referred to as data sparsity, and various methods have been studied to address these problems. However, most attempts to solve the sparsity problem are not optimal because they can only be applied when additional data such as users' personal information, social networks, or characteristics of items are included. Another problem is that real-world score data are mostly biased to high scores, resulting in severe imbalances. One cause of this imbalance distribution is the purchasing bias, in which only users with high product ratings purchase products, so those with low ratings are less likely to purchase products and thus do not leave negative product reviews. Due to these characteristics, unlike most users' actual preferences, reviews by users who purchase products are more likely to be positive. Therefore, the actual rating data is over-learned in many classes with high incidence due to its biased characteristics, distorting the market. Applying collaborative filtering to these imbalanced data leads to poor recommendation performance due to excessive learning of biased classes. Traditional oversampling techniques to address this problem are likely to cause overfitting because they repeat the same data, which acts as noise in learning, reducing recommendation performance. In addition, pre-processing methods for most existing data imbalance problems are designed and used for binary classes. Binary class imbalance techniques are difficult to apply to multi-class problems because they cannot model multi-class problems, such as objects at cross-class boundaries or objects overlapping multiple classes. To solve this problem, research has been conducted to convert and apply multi-class problems to binary class problems. However, simplification of multi-class problems can cause potential classification errors when combined with the results of classifiers learned from other sub-problems, resulting in loss of important information about relationships beyond the selected items. Therefore, it is necessary to develop more effective methods to address multi-class imbalance problems. We propose a collaborative filtering model using CGAN to generate realistic virtual data to populate the empty user-item matrix. Conditional vector y identify distributions for minority classes and generate data reflecting their characteristics. Collaborative filtering then maximizes the performance of the recommendation system via hyperparameter tuning. This process should improve the accuracy of the model by addressing the sparsity problem of collaborative filtering implementations while mitigating data imbalances arising from real data. Our model has superior recommendation performance over existing oversampling techniques and existing real-world data with data sparsity. SMOTE, Borderline SMOTE, SVM-SMOTE, ADASYN, and GAN were used as comparative models and we demonstrate the highest prediction accuracy on the RMSE and MAE evaluation scales. Through this study, oversampling based on deep learning will be able to further refine the performance of recommendation systems using actual data and be used to build business recommendation systems.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

Analysis of the Domestic Vision based Technology for Railway Corporation (철도운영기관 적용을 위한 국내 영상기반 기술 분석)

  • Lee, Sang-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.457-462
    • /
    • 2018
  • Railway system has been unmanned and high-speedy. Korean railway corporations need a more effective and smarter system for operation and maintenance. So there are many theses that studied the intelligent operation and maintenance system using vision based technologies for railway corporation. This paper analyzes domestic theses which studied the intelligent vision based system for railway safety, railway vehicle and facilities and proposes research which uses the more powerful vision based technology with deep-learning for railway corporation.