• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.031 seconds

Implementation of Computer Vision and Deep Learning-Based Golfer Pose-Estimation System And Coaching System (컴퓨터 비전과 딥러닝 라이브러리 기반 골퍼 자세 판단 및 코칭 시스템)

  • Byeon, Woo-Jin;Shim, Young-Seon;You, Hye-Seung;Kang, Seokhun
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.1040-1043
    • /
    • 2020
  • 본 논문에서는 골퍼의 자세 교정을 위해 레슨 프로 혹은 코치가 수행하는 교육을 담당하는 시스템을 구현한다. 이 시스템은 골프를 배우고자 하는 골퍼와 자세를 교정하고자 하는 골퍼를 대상으로 한다. 프로 골퍼의 스윙자세 영상을 촬영하고 딥러닝 라이브러리로 관절, 클럽의 위치를 디지털로 식별하여 표준 자세 정보를 입수한다. 그리고 사용자의 영상을 촬영하여 표준자세 정보와 비교 후 올바른 자세를 도표 및 시각적으로 제공 할 수 있도록 한다. 사람이 하는 방식 보다 객관적이고, 센서방식 보다 경제적인 시스템으로 골프교육산업의 활성화에 기여 할 수 있을 것이다.

Artificial intelligence as an aid to predict the motion problem in sport

  • Yongyong Wang;Qixia Jia;Tingting Deng;H. Elhosiny Ali
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.111-126
    • /
    • 2023
  • Highly reliable and versatile methods artificial intelligence (AI) have found multiple application in the different fields of science, engineering and health care system. In the present study, we aim to utilize AI method to investigated vibrations in the human leg bone. In this regard, the bone geometry is simplified as a thick cylindrical shell structure. The deep neural network (DNN) is selected for prediction of natural frequency and critical buckling load of the bone cylindrical model. Training of the network is conducted with results of the numerical solution of the governing equations of the bone structure. A suitable optimization algorithm is selected for minimizing the loss function of the DNN. Generalized differential quadrature method (GDQM), and Hamilton's principle are used for solving and obtaining the governing equations of the system. As well as this, in the results section, with the aid of AI some predictions for improving the behaviors of the various sport systems will be given in detail.

Customer-based Recommendation Model for Next Merchant Recommendation

  • Bayartsetseg Kalina;Ju-Hong Lee
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.9-16
    • /
    • 2023
  • In the recommendation system of the credit card company, it is necessary to understand the customer patterns to predict a customer's next merchant based on their histories. The data we want to model is much more complex and there are various patterns that customers choose. In such a situation, it is necessary to use an effective model that not only shows the relevance of the merchants, but also the relevance of the customers relative to these merchants. The proposed model aims to predict the next merchant for the customer. To improve prediction performance, we propose a novel model, called Customer-based Recommendation Model (CRM), to produce a more efficient representation of customers. For the next merchant recommendation system, we use a synthetic credit card usage dataset, BC'17. To demonstrate the applicability of the proposed model, we also apply it to the next item recommendation with another real-world transaction dataset, IJCAI'16.

Research on Damage Identification of Buried Pipeline Based on Fiber Optic Vibration Signal

  • Weihong Lin;Wei Peng;Yong Kong;Zimin Shen;Yuzhou Du;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.511-517
    • /
    • 2023
  • Pipelines play an important role in urban water supply and drainage, oil and gas transmission, etc. This paper presents a technique for pattern recognition of fiber optic vibration signals collected by a distributed vibration sensing (DVS) system using a deep learning residual network (ResNet). The optical fiber is laid on the pipeline, and the signal is collected by the DVS system and converted into a 64 × 64 single-channel grayscale image. The grayscale image is input into the ResNet to extract features, and finally the K-nearest-neighbors (KNN) algorithm is used to achieve the classification and recognition of pipeline damage.

Performance Analysis and Identifying Characteristics of Processing-in-Memory System with Polyhedral Benchmark Suite (프로세싱 인 메모리 시스템에서의 PolyBench 구동에 대한 동작 성능 및 특성 분석과 고찰)

  • Jeonggeun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.142-148
    • /
    • 2023
  • In this paper, we identify performance issues in executing compute kernels from PolyBench, which includes compute kernels that are the core computational units of various data-intensive workloads, such as deep learning and data-intensive applications, on Processing-in-Memory (PIM) devices. Therefore, using our in-house simulator, we measured and compared the various performance metrics of workloads based on traditional out-of-order and in-order processors with Processing-in-Memory-based systems. As a result, the PIM-based system improves performance compared to other computing models due to the short-term data reuse characteristic of computational kernels from PolyBench. However, some kernels perform poorly in PIM-based systems without a multi-layer cache hierarchy due to some kernel's long-term data reuse characteristics. Hence, our evaluation and analysis results suggest that further research should consider dynamic and workload pattern adaptive approaches to overcome performance degradation from computational kernels with long-term data reuse characteristics and hidden data locality.

  • PDF

Implementation of Indoor Crack Monitoring System Using Drone Image (드론 영상분석 기술을 활용한 실내 골조 균열 모니터링 시스템 검증)

  • Nho, Hyunju;Lee, Giryun;Jung, Namcheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.261-262
    • /
    • 2023
  • Drone is a suitable equipment for capturing images of cracks at construction sites based on its efficient mobility and high-resolution image acquisition capabilities. In this study, drone was used to acquire indoor construction sites framework images and deep learning technology was applied to detect cracks and measure width, and size. Finally, the usability of the process was verified based on the indoor crack monitoring system.

  • PDF

Fuel Consumption Prediction and Life Cycle History Management System Using Historical Data of Agricultural Machinery

  • Jung Seung Lee;Soo Kyung Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.5
    • /
    • pp.27-37
    • /
    • 2022
  • This study intends to link agricultural machine history data with related organizations or collect them through IoT sensors, receive input from agricultural machine users and managers, and analyze them through AI algorithms. Through this, the goal is to track and manage the history data throughout all stages of production, purchase, operation, and disposal of agricultural machinery. First, LSTM (Long Short-Term Memory) is used to estimate oil consumption and recommend maintenance from historical data of agricultural machines such as tractors and combines, and C-LSTM (Convolution Long Short-Term Memory) is used to diagnose and determine failures. Memory) to build a deep learning algorithm. Second, in order to collect historical data of agricultural machinery, IoT sensors including GPS module, gyro sensor, acceleration sensor, and temperature and humidity sensor are attached to agricultural machinery to automatically collect data. Third, event-type data such as agricultural machine production, purchase, and disposal are automatically collected from related organizations to design an interface that can integrate the entire life cycle history data and collect data through this.

A Study on Design and Implementation of Driver's Blind Spot Assist System Using CNN Technique (CNN 기법을 활용한 운전자 시선 사각지대 보조 시스템 설계 및 구현 연구)

  • Lim, Seung-Cheol;Go, Jae-Seung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.149-155
    • /
    • 2020
  • The Korea Highway Traffic Authority provides statistics that analyze the causes of traffic accidents that occurred since 2015 using the Traffic Accident Analysis System (TAAS). it was reported Through TAAS that the driver's forward carelessness was the main cause of traffic accidents in 2018. As statistics on the cause of traffic accidents, 51.2 percent used mobile phones and watched DMB while driving, 14 percent did not secure safe distance, and 3.6 percent violated their duty to protect pedestrians, representing a total of 68.8 percent. In this paper, we propose a system that has improved the advanced driver assistance system ADAS (Advanced Driver Assistance Systems) by utilizing CNN (Convolutional Neural Network) among the algorithms of Deep Learning. The proposed system learns a model that classifies the movement of the driver's face and eyes using Conv2D techniques which are mainly used for Image processing, while recognizing and detecting objects around the vehicle with cameras attached to the front of the vehicle to recognize the driving environment. Then, using the learned visual steering model and driving environment data, the hazard is classified and detected in three stages, depending on the driver's view and driving environment to assist the driver with the forward and blind spots.

A Study on the Media Recommendation System with Time Period Considering the Consumer Contextual Information Using Public Data (공공 데이터 기반 소비자 상황을 고려한 시간대별 미디어 추천 시스템 연구)

  • Kim, Eunbi;Li, Qinglong;Chang, Pilsik;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.95-117
    • /
    • 2022
  • With the emergence of various media types due to the development of Internet technology, advertisers have difficulty choosing media suitable for corporate advertising strategies. There are challenging to effectively reflect consumer contextual information when advertising media is selected based on traditional marketing strategies. Thus, a recommender system is needed to analyze consumers' past data and provide advertisers with personalized media based on the information consumers needs. Since the traditional recommender system provides recommendation services based on quantitative preference information, there is difficult to reflect various contextual information. This study proposes a methodology that uses deep learning to recommend personalized media to advertisers using consumer contextual information such as consumers' media viewing time, residence area, age, and gender. This study builds a recommender system using media & consumer research data provided by the Korea Broadcasting Advertising Promotion Corporation. Additionally, we evaluate the recommendation performance compared with several benchmark models. As a result of the experiment, we confirmed that the recommendation model reflecting the consumer's contextual information showed higher accuracy than the benchmark model. We expect to contribute to helping advertisers make effective decisions when selecting customized media based on various contextual information of consumers.

Development of Driver's Safety/Danger Status Cognitive Assistance System Based on Deep Learning (딥러닝 기반의 운전자의 안전/위험 상태 인지 시스템 개발)

  • Miao, Xu;Lee, Hyun-Soon;Kang, Bo-Yeong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.38-44
    • /
    • 2018
  • In this paper, we propose Intelligent Driver Assistance System (I-DAS) for driver safety. The proposed system recognizes safety and danger status by analyzing blind spots that the driver cannot see because of a large angle of head movement from the front. Most studies use image pre-processing such as face detection for collecting information about the driver's head movement. This not only increases the computational complexity of the system, but also decreases the accuracy of the recognition because the image processing system dose not use the entire image of the driver's upper body while seated on the driver's seat and when the head moves at a large angle from the front. The proposed system uses a convolutional neural network to replace the face detection system and uses the entire image of the driver's upper body. Therefore, high accuracy can be maintained even when the driver performs head movement at a large angle from the frontal gaze position without image pre-processing. Experimental result shows that the proposed system can accurately recognize the dangerous conditions in the blind zone during operation and performs with 95% accuracy of recognition for five drivers.