• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.029 seconds

Initial Small Data Reveal Rumor Traits via Recurrent Neural Networks (초기 소량 데이터와 RNN을 활용한 루머 전파 추적 기법)

  • Kwon, Sejeong;Cha, Meeyoung
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.680-685
    • /
    • 2017
  • The emergence of online media and their data has enabled data-driven methods to solve challenging and complex tasks such as rumor classification problems. Recently, deep learning based models have been shown as one of the fastest and the most accurate algorithms to solve such problems. These new models, however, either rely on complete data or several days-worth of data, limiting their applicability in real time. In this study, we go beyond this limit and test the possibility of super early rumor detection via recurrent neural networks (RNNs). Our model takes in social media streams as time series input, along with basic meta-information about the rumongers including the follower count and the psycholinguistic traits of rumor content itself. Based on analyzing millions of social media posts on 498 real rumors and 494 non-rumor events, our RNN-based model detected rumors with only 30 initial posts (i.e., within a few hours of rumor circulation) with remarkable F1 score of 0.74. This finding widens the scope of new possibilities for building a fast and efficient rumor detection system.

Analyzing and Solving GuessWhat?! (GuessWhat?! 문제에 대한 분석과 파훼)

  • Lee, Sang-Woo;Han, Cheolho;Heo, Yujung;Kang, Wooyoung;Jun, Jaehyun;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.30-35
    • /
    • 2018
  • GuessWhat?! is a game in which two machine players, composed of questioner and answerer, ask and answer yes-no-N/A questions about the object hidden for the answerer in the image, and the questioner chooses the correct object. GuessWhat?! has received much attention in the field of deep learning and artificial intelligence as a testbed for cutting-edge research on the interplay of computer vision and dialogue systems. In this study, we discuss the objective function and characteristics of the GuessWhat?! game. In addition, we propose a simple solver for GuessWhat?! using a simple rule-based algorithm. Although a human needs four or five questions on average to solve this problem, the proposed method outperforms state-of-the-art deep learning methods using only two questions, and exceeds human performance using five questions.

Intelligent Hybrid Fusion Algorithm with Vision Patterns for Generation of Precise Digital Road Maps in Self-driving Vehicles

  • Jung, Juho;Park, Manbok;Cho, Kuk;Mun, Cheol;Ahn, Junho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.3955-3971
    • /
    • 2020
  • Due to the significant increase in the use of autonomous car technology, it is essential to integrate this technology with high-precision digital map data containing more precise and accurate roadway information, as compared to existing conventional map resources, to ensure the safety of self-driving operations. While existing map technologies may assist vehicles in identifying their locations via Global Positioning System, it is however difficult to update the environmental changes of roadways in these maps. Roadway vision algorithms can be useful for building autonomous vehicles that can avoid accidents and detect real-time location changes. We incorporate a hybrid architectural design that combines unsupervised classification of vision data with supervised joint fusion classification to achieve a better noise-resistant algorithm. We identify, via a deep learning approach, an intelligent hybrid fusion algorithm for fusing multimodal vision feature data for roadway classifications and characterize its improvement in accuracy over unsupervised identifications using image processing and supervised vision classifiers. We analyzed over 93,000 vision frame data collected from a test vehicle in real roadways. The performance indicators of the proposed hybrid fusion algorithm are successfully evaluated for the generation of roadway digital maps for autonomous vehicles, with a recall of 0.94, precision of 0.96, and accuracy of 0.92.

Biometrics System Technology Trends Based on Biosignal (생체신호 기반 바이오인식 시스템 기술 동향)

  • Choi, Gyu-Ho;Moon, Hae-Min;Pan, Sung-Bum
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.381-391
    • /
    • 2017
  • Biometric technology is a technology for authenticating a user using the physical or behavioral features of the inherent characteristics of the individual. With the necessity and efficiency of the technology in the fields of finance, security, access control, medical welfare, inspection, and entertainment, the service range has been expanding. Biometrics using biometric information such as fingerprints and faces have been exposed to counterfeit and disguised threats and become a social problem. Recent studies using a bio-signal from the inside of the body other than the bio-information of the external body are being developed. This paper analyzes the recent research and technology of biometric systems using bio-signals, ECG, heart sounds, EEG, and EMG to present the skills needed for the development direction. In the future, utilizing the deep learning to build and analyze database to manage bio-signal based big data for the complex condition of individuals, biometrics technologies suitable for real time environment are expected to be researched.

Study on DNN Based Android Malware Detection Method for Mobile Environmentt (모바일 환경에 적합한 DNN 기반의 악성 앱 탐지 방법에 관한 연구)

  • Yu, Jinhyun;Seo, In Hyuk;Kim, Seungjoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.3
    • /
    • pp.159-168
    • /
    • 2017
  • Smartphone malware has increased because Smartphone users has increased and smartphones are widely used in everyday life. Since 2012, Android has been the most mobile operating system. Owing to the open nature of Android, countless malware are in Android markets that seriously threaten Android security. Most of Android malware detection program does not detect malware to which bypass techniques apply and also does not detect unknown malware. In this paper, we propose lightweight method for detection of Android malware using static analysis and deep learning techniques. For experiments we crawl 7,000 apps from the Google Play Store and collect 6,120 malwares. The result show that proposed method can achieve 98.05% detection accuracy. Also, proposed method can detect about unknown malware families with good performance. On smartphones, the method requires 10 seconds for an analysis on average.

A Development of Intelligent Pumping Station Operation System Using Deep Reinforcement Learning (심층 강화학습을 이용한 지능형 빗물펌프장 운영 시스템 개발)

  • Kang, Seung-Ho;Park, Jung-Hyun;Joo, Jin-Gul
    • Convergence Security Journal
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • The rainwater pumping station located near a river prevents river overflow and flood damages by operating several pumps according to the appropriate rules against the reservoir. At the present time, almost all of rainwater pumping stations employ pumping policies based on the simple rules depending only on the water level of reservoir. The ongoing climate change caused by global warming makes it increasingly difficult to predict the amount of rainfall. Therefore, it is difficult to cope with changes in the water level of reservoirs through the simple pumping policy. In this paper, we propose a pump operating method based on deep reinforcement learning which has the ability to select the appropriate number of operating pumps to keep the reservoir to the proper water level using the information of the amount of rainfall, the water volume and current water level of the reservoir. In order to evaluate the performance of the proposed method, the simulations are performed using Storm Water Management Model(SWMM), a dynamic rainfall-runoff-routing simulation model, and the performance of the method is compared with that of a pumping policy being in use in the field.

Game Elements Balancing using Deep Learning in Artificial Neural Network (딥러닝이 적용된 게임 밸런스에 관한 연구 게임 기획 방법론의 관점으로)

  • Jeon, Joonhyun
    • Journal of the HCI Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • Game balance settings are crucial to game design. Game balancing must take into account a large amount of numerical values, configuration data, and the relationship between elements. Once released and served, a game - even for a balanced game - often requires calibration according to the game player's preference. To achieve sustainability, game balance needs adjustment while allowing for small changes. In fact, from the producers' standpoint, game balance issue is a critical success factor in game production. Therefore, they often invest much time and capital in game design. However, if such a costly game cannot provide players with an appropriate level of difficulty, the game is more likely to fail. On the contrary, if the game successfully identifies the game players' propensity and performs self-balancing to provide appropriate difficulty levels, this will significantly reduce the likelihood of game failure, while at the same time increasing the lifecycle of the game. Accordingly, if a novel technology for game balancing is developed using artificial intelligence (AI) that offers personalized, intelligent, and customized service to individual game players, it would bring significant changes to the game production system.

  • PDF

Convolution Neural Network based TW3 Maximum Height Prediction System (컨볼루션 신경망 기반의 TW3 최대신장예측 시스템)

  • Park, Si-hyeon;Cho, Young-bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1314-1319
    • /
    • 2018
  • The current TW3 - based maximum height prediction technique used in KMAA(Korean Medical Academy of Auxology) is manual and subjective, and it requires a lot of time and effort in the medical treatment, while the interest in the child's growth is very high. In addition, the technique of classifying images using deep learning, especially convolutional neural networks, is used in many fields at a more accurate level than the human eyes, also there is no exception in the medical field. In this paper, we introduce a TW3 algorithm using deep learning, that uses the convolutional neural network to predict the growth level of the left hand bone, to predict the maximum height of child and youth in order to increase the reliability of predictions and improve the convenience of the doctor.

Sentiment Analysis of Foot-and-Mouth Disease Using Tweet Text-Mining Technique (트윗 텍스트 마이닝 기법을 이용한 구제역의 감성분석)

  • Chae, Heechan;Lee, Jonguk;Choi, Yoona;Park, Daihee;Chung, Yongwha
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.11
    • /
    • pp.419-426
    • /
    • 2018
  • Due to the FMD(foot-and-mouth disease), the domestic animal husbandry and related industries suffer enormous damage every year. Although various academic researches related to FMD are ongoing, engineering studies on the social effects of FMD are very limited. In this study, we propose a systematic methodology to analyze emotional responses of regular citizens on FMD using text mining techniques. The proposed system first collects data related to FMD from the tweets posted on Twitter, and then performs a polarity classification process using a deep-learning technique. Second, keywords are extracted from the tweet using LDA, which is one of the typical techniques of topic modeling, and a keyword network is constructed from the extracted keywords. Finally, we analyze the various social effects of regular citizens on FMD through keyword network. As a case study, we performed the emotional analysis experiment of regular citizens about FMD from July 2010 to December 2011 in Korea.

Deep Learning Based Short-Term Electric Load Forecasting Models using One-Hot Encoding (원-핫 인코딩을 이용한 딥러닝 단기 전력수요 예측모델)

  • Kim, Kwang Ho;Chang, Byunghoon;Choi, Hwang Kyu
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.852-857
    • /
    • 2019
  • In order to manage the demand resources of project participants and to provide appropriate strategies in the virtual power plant's power trading platform for consumers or operators who want to participate in the distributed resource collective trading market, it is very important to forecast the next day's demand of individual participants and the overall system's electricity demand. This paper developed a power demand forecasting model for the next day. For the model, we used LSTM algorithm of deep learning technique in consideration of time series characteristics of power demand forecasting data, and new scheme is applied by applying one-hot encoding method to input/output values such as power demand. In the performance evaluation for comparing the general DNN with our LSTM forecasting model, both model showed 4.50 and 1.89 of root mean square error, respectively, and our LSTM model showed high prediction accuracy.