• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.03 seconds

Real-time Dog Behavior Analysis and Care System Using Sensor Module and Artificial Neural Network (센서 모듈과 인공신경망을 활용한 실시간 반려견 행동 분석 및 케어 시스템)

  • Hee Rae Lee;Seon Gyeong Kim;Hyung Gyu Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.35-42
    • /
    • 2024
  • In this study, we propose a method for real-time recognition and analysis of dog behavior using a motion sensor and deep learning techonology. The existing home CCTV (Closed-Circuit Television) that recognizes dog behavior has privacy and security issues, so there is a need for new technologies to overcome them. In this paper, we propose a system that can analyze and care for a dog's behavior based on the data measured by the motion sensor. The study compares the MLP (Multi-Layer Perceptron) and CNN (Convolutional Neural Network) models to find the optimal model for dog behavior analysis, and the final model, which has an accuracy of about 82.19%, is selected. The model is lightened to confirm its potential for use in embedded environments.

AI Image Restoration Based on Synthetic Image for Improving Aircraft Optical Detection (AI 기반 항공기 광학 탐지 장치 성능 개선을 위한 합성 이미지 활용 연구)

  • Sang Gyu Jeong;Na Eun Kwon;Hyung Woo Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.5
    • /
    • pp.650-656
    • /
    • 2024
  • This study proposes an AI-based image restoration technique to reduce image distortion caused by lighting and noise in nighttime environments and improve the performance of infrared detection systems. A synthetic image dataset was constructed using visible light images under various lighting conditions and ISO settings, and deep learning models (AutoEncoder and U-Net) were trained to assess image restoration performance. Experimental results show that the Multi-ISO model (9-channel) outperforms the Single-ISO model (3-channel), especially when utilizing input data with multiple ISO values. This study demonstrates that AI models can be effectively trained using synthetic data, even when real data collection is challenging, and can be applied to image restoration tasks. These findings are expected to contribute to enhancing the performance of optical detection systems through AI-based technology.

Development of Checker-Switch Error Detection System using CNN Algorithm (CNN 알고리즘을 이용한 체커스위치 불량 검출 시스템 개발)

  • Suh, Sang-Won;Ko, Yo-Han;Yoo, Sung-Goo;Chong, Kil-To
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.38-44
    • /
    • 2019
  • Various automation studies have been conducted to detect defective products based on product images. In the case of machine vision-based studies, size and color error are detected through a preprocessing process. A situation may arise in which the main features are removed during the preprocessing process, thereby decreasing the accuracy. In addition, complex systems are required to detect various kinds of defects. In this study, we designed and developed a system to detect errors by analyzing various conditions of defective products. We designed the deep learning algorithm to detect the defective features from the product images during the automation process using a convolution neural network (CNN) and verified the performance by applying the algorithm to the checker-switch failure detection system. It was confirmed that all seven error characteristics were detected accurately, and it is expected that it will show excellent performance when applied to automation systems for error detection.

Development of AI-Based Condition Monitoring System for Failure Diagnosis of Excavator's Travel Device (굴착기 주행디바이스의 고장 진단을 위한 AI기반 상태 모니터링 시스템 개발)

  • Baek, Hee Seung;Shin, Jong Ho;Kim, Seong Joon
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2021
  • There is an increasing interest in condition-based maintenance for the prevention of economic loss due to failure. Moreover, immense research is being carried out in related technologies in the field of construction machinery. In particular, data-based failure diagnosis methods that employ AI (machine & deep learning) algorithms are in the spotlight. In this study, we have focused on the failure diagnosis and mode classification of reduction gear of excavator's travel device by using the AI algorithm. In addition, a remote monitoring system has been developed that can monitor the status of the reduction gear by using the developed diagnosis algorithm. The failure diagnosis algorithm was performed in the process of data acquisition of normal and abnormal under various operating conditions, data processing and analysis by the wavelet transformation, and learning. The developed algorithm was verified based on three-evaluation conditions. Finally, we have built a system that can check the status of the reduction gear of travel devices on the web using the Edge platform, which is embedded with the failure diagnosis algorithm and cloud.

A Study on Algorithm Selection and Comparison for Improving the Performance of an Artificial Intelligence Product Recognition Automatic Payment System

  • Kim, Heeyoung;Kim, Dongmin;Ryu, Gihwan;Hong, Hotak
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.230-235
    • /
    • 2022
  • This study is to select an optimal object detection algorithm for designing a self-checkout counter to improve the inconvenience of payment systems for products without existing barcodes. To this end, a performance comparison analysis of YOLO v2, Tiny YOLO v2, and the latest YOLO v5 among deep learning-based object detection algorithms was performed to derive results. In this paper, performance comparison was conducted by forming learning data as an example of 'donut' in a bakery store, and the performance result of YOLO v5 was the highest at 96.9% of mAP. Therefore, YOLO v5 was selected as the artificial intelligence object detection algorithm to be applied in this paper. As a result of performance analysis, when the optimal threshold was set for each donut, the precision and reproduction rate of all donuts exceeded 0.85, and the majority of donuts showed excellent recognition performance of 0.90 or more. We expect that the results of this paper will be helpful as the fundamental data for the development of an automatic payment system using AI self-service technology that is highly usable in the non-face-to-face era.

Tooth Diagnosis System Using Deep Learning (딥러닝을 이용한 치아진단 시스템)

  • Kim, Do-Gun;Park, Seung-Kyu;Choi, Woo-Young;Jeon, Gwang-gil
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.757-759
    • /
    • 2017
  • 현대인들은 삶을 영위하기 위해 매우 바쁘게 생활한다. 아이러니하게도, 이로 인해 자신의 건강은 챙기기 쉽지 않다. 특히 치아 쪽은 건강검진에도 포함되어 있지 않아 더욱 그렇다. 이를 해결하기 위해 본 논문은 충치를 판단해주는 플랫폼을 제안한다. 실시간으로 사용자의 구강 안을 촬영한 영상에서 충치, 아말감, 골드 크라운 이렇게 세 가지 치아의 상태를 구분하여 검출한다. 치아의 종류를 판단하는 기술은 딥러닝을 이용하였다. 딥러닝 학습모델이 치아 판별기로써의 기능을 다하려면 충분하게 많은 각 종류의 치아 데이터가 필요하다. 따라서, 인터넷, 학술 자료 등을 활용하여 수집했다. 이 시스템을 혈압측정기, 신장계와 같이 공공장소에 설치함으로써 사용자 스스로 치아의 상태를 확인 할 수 있을 것으로 예상된다.

An auxiliary mechanism for vision obstruction using DeepLearning (딥러닝을 이용한 시각장애인 보조도구)

  • Kim, Youngjun;Yun, Jonggeun;Hur, Jaehyuk;Shin, Jaeho;Kang, Woochul
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.853-856
    • /
    • 2017
  • 우리나라에 장애인 인구의 10% 정도인 약 25만 명의 사람들이 살아가고 있다[3]. 그러한 분들을 위한 여러 복지와 편의시설이 만들어지고 있지만 아직 도로를 안전하게 다니기에는 미흡한 부분이 많다. 시각장애인들이 좀 더 안전하게 생활을 할 수 있도록 하는 보조 장치를 제안한다. 사용자가 필요한 순간의 모습을 촬영한 뒤 딥 러닝으로 축적된 학습데이터를 이용하여 그 장면을 분석한다. 그 결과를 하나의 문장으로 표현하여 이어폰을 통해 사용자에게 서비스를 제공한다. 지원된 음성 서비스를 통해 시각장애인들이 걸어가는 길에 어떠한 장애물이 있는지 알려주어 위험한 상황에 놓이지 않고 안전하게 길을 걸어 다닐 수 있도록 보조해준다.

An Unmanned Checkout Counter using Deep Learning and Image Processing (딥러닝과 영상처리를 활용한 무인계산시스템)

  • Kim, Hongjae;Choi, Heewoong;Youn, Bora;Kim, Okgeon;Cho, Joongwhee
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.975-977
    • /
    • 2018
  • 본 논문은 대형마트와 같은 유통업계에서 무인계산시스템의 자동화로 소비자의 계산 편리성 증대를 위한 딥러닝과 영상처리를 활용한 무인계산시스템을 제안한다. 소비자가 무인계산시스템의 컨베이어 벨트 위에 계산할 물품을 올리면 벨트 끝에 위치한 카메라로 이동하여 촬영한 물품의 이미지를 딥러닝과 영상처리로 분석하여 제품의 리스트를 제공, 결제가 완료되면 서버에 전송하여 재고를 관리하고 발주가 필요한 제품은 자동으로 발주하는 시스템이다.

Smart Mobile to Prevent Infant Accident Using Deep Learning and Video Processing (딥러닝과 영상처리를 활용한 영유아 사고 방지 스마트 모빌)

  • Ham, Seoung-Hoon;Han, Dong-Ho;Park, Yu-Hwan;Choi, Sang-Ik;Kang, Woo-Chul
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.364-367
    • /
    • 2019
  • 영유아에 대한 안전사고는 꾸준히 발생하는 추세지만, 부모의 지속적인 관심만큼 효과적인 해결방안은 발표되지 않고 있다. 이 문제를 해결하기 위해 유아용 모빌에 카메라를 장착하여 아기가 촬영되고 있는 영상을 임베디드 보드에 전송하고, 딥러닝과 영상처리를 통해 영유아의 안전 상황에 대한 판단을 진행한다. 실시간 영상 스트리밍 서비스만을 제공하는 기존의 스마트 모빌에 대한 차별성과 모빌의 동작 오류에 따른 영유아 무방비 상황 노출을 방지하기 위한 이중화 시스템이 적용된 영유아 사고 방지 스마트 모빌을 구현한 후, 성능 평가를 통해 본 시스템의 우수성을 입증했다.

Image Enhanced Machine Vision System for Smart Factory

  • Kim, ByungJoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.7-13
    • /
    • 2021
  • Machine vision is a technology that helps the computer as if a person recognizes and determines things. In recent years, as advanced technologies such as optical systems, artificial intelligence and big data advanced in conventional machine vision system became more accurate quality inspection and it increases the manufacturing efficiency. In machine vision systems using deep learning, the image quality of the input image is very important. However, most images obtained in the industrial field for quality inspection typically contain noise. This noise is a major factor in the performance of the machine vision system. Therefore, in order to improve the performance of the machine vision system, it is necessary to eliminate the noise of the image. There are lots of research being done to remove noise from the image. In this paper, we propose an autoencoder based machine vision system to eliminate noise in the image. Through experiment proposed model showed better performance compared to the basic autoencoder model in denoising and image reconstruction capability for MNIST and fashion MNIST data sets.