• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.03 seconds

Time Series Data Processing Deep Learning system for Prediction of Hospital Outpatient Number (병원 외래환자수의 예측을 위한 시계열 데이터처리 딥러닝 시스템)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.313-318
    • /
    • 2021
  • The advent of the Deep Learning has applied to many industrial and general applications having an impact on our lives these days. Certain type of machine learning model is needed to be designed for a specific problem of field. Recently, there are many instances to solve the various COVID-19 related problems using deep learning model. Therefore, in this paper, a deep learning model for predicting number of outpatients of a hospital in advance is suggested. The suggested deep learning model is designed by using the Keras in Jupyter Notebook. The prediction result is being analyzed with the real data in graph, as well as the loss rate with some validation data to verify either for the underfitting or the overfitting.

Development of deep learning-based rock classifier for elementary, middle and high school education (초중고 교육을 위한 딥러닝 기반 암석 분류기 개발)

  • Park, Jina;Yong, Hwan-Seung
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • These days, as Interest in Image recognition with deep learning is increasing, there has been a lot of research in image recognition using deep learning. In this study, we propose a system for classifying rocks through rock images of 18 types of rock(6 types of igneous, 6 types of metamorphic, 6 types of sedimentary rock) which are addressed in the high school curriculum, using CNN model based on Tensorflow, deep learning open source framework. As a result, we developed a classifier to distinguish rocks by learning the images of rocks and confirmed the classification performance of rock classifier. Finally, through the mobile application implemented, students can use the application as a learning tool in classroom or on-site experience.

Deep Learning-based Environment-aware Home Automation System (딥러닝 기반 상황 맞춤형 홈 오토메이션 시스템)

  • Park, Min-ji;Noh, Yunsu;Jo, Seong-jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.334-337
    • /
    • 2019
  • In this study, we built the data collection system to learn user's habit data by deep learning and to create an indoor environment according to the situation. The system consists of a data collection server and several sensor nodes, which creates the environment according to the data collected. We used Google Inception v3 network to analyze the photographs and hand-designed second DNN (Deep Neural Network) to infer behaviors. As a result of the DNN learning, we gained 98.4% of Testing Accuracy. Through this results, we were be able to prove that DNN is capable of extrapolating the situation.

  • PDF

Using the Deep Learning Techniques for Understanding the nativelikeness of Korean EFL Learners (한국인 영어학습자의 영어 문장은 얼마나 원어민스러운가: 딥러닝 기반 분석)

  • 박권식;유석훈;송상헌
    • Language Facts and Perspectives
    • /
    • v.48
    • /
    • pp.195-227
    • /
    • 2019
  • Building upon the state-of-the-art deep learning techniques, the present study classifies the texts written by Korean EFL learners and English native speakers and thereby demonstrates how the two types of texts differ from each other. To this end, the current work makes use of the Yonsei English Learner Corpus (YELC) and Gacheon Learner Corpus (GLC) as the L2 data, and Corpus of Contemporary American English (COCA) as the L1 data. Utilizing the sentence classification methods, the current work implements a system to differentiate the two types of texts, the accuracy of which is about 94%. This indicates that the deep leaning-based system is capable of identifying the well-formedness and felicities of the texts written by Korean EFL learners. Nonetheless, the system-based judgments do not overlap with human judgments largely because the deep learning model exclusively focuses on sequence of words. The present study provides a further analysis to see how the two types of judgments differ with respect to grammatical errors (e.g., word order, voice, etc.) and felicity errors (e.g., semantic prosody, the position of adverbs, etc.).

Enhanced Network Intrusion Detection using Deep Convolutional Neural Networks

  • Naseer, Sheraz;Saleem, Yasir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5159-5178
    • /
    • 2018
  • Network Intrusion detection is a rapidly growing field of information security due to its importance for modern IT infrastructure. Many supervised and unsupervised learning techniques have been devised by researchers from discipline of machine learning and data mining to achieve reliable detection of anomalies. In this paper, a deep convolutional neural network (DCNN) based intrusion detection system (IDS) is proposed, implemented and analyzed. Deep CNN core of proposed IDS is fine-tuned using Randomized search over configuration space. Proposed system is trained and tested on NSLKDD training and testing datasets using GPU. Performance comparisons of proposed DCNN model are provided with other classifiers using well-known metrics including Receiver operating characteristics (RoC) curve, Area under RoC curve (AuC), accuracy, precision-recall curve and mean average precision (mAP). The experimental results of proposed DCNN based IDS shows promising results for real world application in anomaly detection systems.

Deep Quiz Cropping for Construction of Quiz Pool in Online Quiz System (온라인 퀴즈 시스템의 문제은행 구축 자동화를 위한 Deep Quiz Cropping 기술 개발)

  • Jeong, Dae-Wook;Jeong, Mun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1187-1194
    • /
    • 2020
  • We presented a method of deep quiz cropping for automatic construction of quiz pool in online quiz systems. The method detects question boxes and sunda boxes in images captured from test papers by a deep learning-based object detector, and makes pairs of question box and sunda box by the box coupling. We applied the deep quiz cropping to images captured from test papers and achieved successful results.

A Study of Multi-Target Localization Based on Deep Neural Network for Wi-Fi Indoor Positioning

  • Yoo, Jaehyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Indoor positioning system becomes of increasing interests due to the demands for accurate indoor location information where Global Navigation Satellite System signal does not approach. Wi-Fi access points (APs) built in many construction in advance helps developing a Wi-Fi Received Signal Strength Indicator (RSSI) based indoor localization. This localization method first collects pairs of position and RSSI measurement set, which is called fingerprint database, and then estimates a user's position when given a query measurement set by comparing the fingerprint database. The challenge arises from nonlinearity and noise on Wi-Fi RSSI measurements and complexity of handling a large amount of the fingerprint data. In this paper, machine learning techniques have been applied to implement Wi-Fi based localization. However, most of existing indoor localizations focus on single position estimation. The main contribution of this paper is to develop multi-target localization by using deep neural, which is beneficial when a massive crowd requests positioning service. This paper evaluates the proposed multilocalization based on deep learning from a multi-story building, and analyses its learning effect as increasing number of target positions.

Artificial Intelligence based Tumor detection System using Computational Pathology

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 2019
  • Pathology is the motor that drives healthcare to understand diseases. The way pathologists diagnose diseases, which involves manual observation of images under a microscope has been used for the last 150 years, it's time to change. This paper is specifically based on tumor detection using deep learning techniques. Pathologist examine the specimen slides from the specific portion of body (e-g liver, breast, prostate region) and then examine it under the microscope to identify the effected cells among all the normal cells. This process is time consuming and not sufficiently accurate. So, there is a need of a system that can detect tumor automatically in less time. Solution to this problem is computational pathology: an approach to examine tissue data obtained through whole slide imaging using modern image analysis algorithms and to analyze clinically relevant information from these data. Artificial Intelligence models like machine learning and deep learning are used at the molecular levels to generate diagnostic inferences and predictions; and presents this clinically actionable knowledge to pathologist through dynamic and integrated reports. Which enables physicians, laboratory personnel, and other health care system to make the best possible medical decisions. I will discuss the techniques for the automated tumor detection system within the new discipline of computational pathology, which will be useful for the future practice of pathology and, more broadly, medical practice in general.

Development of Deep Learning-based Land Monitoring Web Service (딥러닝 기반의 국토모니터링 웹 서비스 개발)

  • In-Hak Kong;Dong-Hoon Jeong;Gu-Ha Jeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.275-284
    • /
    • 2023
  • Land monitoring involves systematically understanding changes in land use, leveraging spatial information such as satellite imagery and aerial photographs. Recently, the integration of deep learning technologies, notably object detection and semantic segmentation, into land monitoring has spurred active research. This study developed a web service to facilitate such integrations, allowing users to analyze aerial and drone images using CNN models. The web service architecture comprises AI, WEB/WAS, and DB servers and employs three primary deep learning models: DeepLab V3, YOLO, and Rotated Mask R-CNN. Specifically, YOLO offers rapid detection capabilities, Rotated Mask R-CNN excels in detecting rotated objects, while DeepLab V3 provides pixel-wise image classification. The performance of these models fluctuates depending on the quantity and quality of the training data. Anticipated to be integrated into the LX Corporation's operational network and the Land-XI system, this service is expected to enhance the accuracy and efficiency of land monitoring.

Exercise Recommendation System Using Deep Neural Collaborative Filtering (신경망 협업 필터링을 이용한 운동 추천시스템)

  • Jung, Wooyong;Kyeong, Chanuk;Lee, Seongwoo;Kim, Soo-Hyun;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.173-178
    • /
    • 2022
  • Recently, a recommendation system using deep learning in social network services has been actively studied. However, in the case of a recommendation system using deep learning, the cold start problem and the increased learning time due to the complex computation exist as the disadvantage. In this paper, the user-tailored exercise routine recommendation algorithm is proposed using the user's metadata. Metadata (the user's height, weight, sex, etc.) set as the input of the model is applied to the designed model in the proposed algorithms. The exercise recommendation system model proposed in this paper is designed based on the neural collaborative filtering (NCF) algorithm using multi-layer perceptron and matrix factorization algorithm. The learning proceeds with proposed model by receiving user metadata and exercise information. The model where learning is completed provides recommendation score to the user when a specific exercise is set as the input of the model. As a result of the experiment, the proposed exercise recommendation system model showed 10% improvement in recommended performance and 50% reduction in learning time compared to the existing NCF model.