• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.03 seconds

Deep Dependence in Deep Learning models of Streamflow and Climate Indices

  • Lee, Taesam;Ouarda, Taha;Kim, Jongsuk;Seong, Kiyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.97-97
    • /
    • 2021
  • Hydrometeorological variables contain highly complex system for temporal revolution and it is quite challenging to illustrate the system with a temporal linear and nonlinear models. In recent years, deep learning algorithms have been developed and a number of studies has focused to model the complex hydrometeorological system with deep learning models. In the current study, we investigated the temporal structure inside deep learning models for the hydrometeorological variables such as streamflow and climate indices. The results present a quite striking such that each hidden unit of the deep learning model presents different dependence structure and when the number of hidden units meet a proper boundary, it reaches the best model performance. This indicates that the deep dependence structure of deep learning models can be used to model selection or investigating whether the constructed model setup present efficient or not.

  • PDF

A Study on Development Deep Learning Based Learning System for Enhancing the Data Analytical Thinking (데이터 분석적 사고력 향상을 위한 딥러닝 기반 학습 시스템 개발 연구)

  • Lee, Young-ho;Koo, Duk-hoi
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.4
    • /
    • pp.393-401
    • /
    • 2017
  • The purpose of this study is to develop a deep learning based learning system for improving learner's data analytical thinking ability. The contents of the study are as follows. First, deep learning was applied to the discovery learning model to improve data analytical thinking ability. This is a learning method that can generate a model showing the relationship of given data by using the deep learning method, then apply the model to new data to obtain the result. Second, we developed a deep learning based system for DBD learning model. Specifically, we developed a system to generate a model of data using the deep learning method and to apply this model. The research of deep learning based learning system will be a new approach to improve learner's data analytical thinking ability in future society where data becomes more important.

Design of Falling Recognition Application System using Deep Learning

  • Kwon, TaeWoo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.120-126
    • /
    • 2020
  • Studies are being conducted regarding falling recognition using sensors on smartphonesto recognize falling in human daily life. These studies use a number of sensors, mostly acceleration sensors, gyro sensors, motion sensors, etc. Falling recognition system processes the values of sensor data by using a falling recognition algorithm and classifies behavior based on thresholds. If the threshold is ambiguous, the accuracy will be reduced. To solve this problem, Deep learning was introduced in the behavioral recognition system. Deep learning is a kind of machine learning technique that computers process and categorize input data rather than processing it by man-made algorithms. Thus, in this paper, we propose a falling recognition application system using deep learning based on smartphones. The proposed system is powered by apps on smartphones. It also consists of three layers and uses DataBase as a Service (DBaaS) to handle big data and address data heterogeneity. The proposed system uses deep learning to recognize the user's behavior, it can expect higher accuracy compared to the system in the general rule base.

Implementation and Verification of Deep Learning-based Automatic Object Tracking and Handy Motion Control Drone System (심층학습 기반의 자동 객체 추적 및 핸디 모션 제어 드론 시스템 구현 및 검증)

  • Kim, Youngsoo;Lee, Junbeom;Lee, Chanyoung;Jeon, Hyeri;Kim, Seungpil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.163-169
    • /
    • 2021
  • In this paper, we implemented a deep learning-based automatic object tracking and handy motion control drone system and analyzed the performance of the proposed system. The drone system automatically detects and tracks targets by analyzing images obtained from the drone's camera using deep learning algorithms, consisting of the YOLO, the MobileNet, and the deepSORT. Such deep learning-based detection and tracking algorithms have both higher target detection accuracy and processing speed than the conventional color-based algorithm, the CAMShift. In addition, in order to facilitate the drone control by hand from the ground control station, we classified handy motions and generated flight control commands through motion recognition using the YOLO algorithm. It was confirmed that such a deep learning-based target tracking and drone handy motion control system stably track the target and can easily control the drone.

A Deep Learning based IOT Device Recognition System (딥러닝을 이용한 IOT 기기 인식 시스템)

  • Chu, Yeon Ho;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.1-5
    • /
    • 2019
  • As the number of IOT devices is growing rapidly, various 'see-thru connection' techniques have been reported for efficient communication with them. In this paper, we propose a deep learning based IOT device recognition system for interaction with these devices. The overall system consists of a TensorFlow based deep learning server and two Android apps for data collection and recognition purposes. As the basic neural network model, we adopted Google's inception-v3, and modified the output stage to classify 20 types of IOT devices. After creating a data set consisting of 1000 images of 20 categories, we trained our deep learning network using a transfer learning technology. As a result of the experiment, we achieve 94.5% top-1 accuracy and 98.1% top-2 accuracy.

Development of a Deep Learning Network for Quality Inspection in a Multi-Camera Inline Inspection System for Pharmaceutical Containers (의약 용기의 다중 카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크 개발)

  • Tae-Yoon Lee;Seok-Moon Yoon;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.474-478
    • /
    • 2024
  • In this paper, we proposes a deep learning network for quality inspection in a multi-camera inline inspection system for pharmaceutical containers. The proposed deep learning network is specifically designed for pharmaceutical containers by using data produced in real manufacturing environments, leading to more accurate quality inspection. Additionally, the use of an inline-capable deep learning network allows for an increase in inspection speed. The development of the deep learning network for quality inspection in the multi-camera inline inspection system consists of three steps. First, a dataset of approximately 10,000 images is constructed from the production site using one line camera for foreign substance inspection and three area cameras for dimensional inspection. Second, the pharmaceutical container data is preprocessed by designating regions of interest (ROI) in areas where defects are likely to occur, tailored for foreign substance and dimensional inspections. Third, the preprocessed data is used to train the deep learning network. The network improves inference speed by reducing the number of channels and eliminating the use of linear layers, while accuracy is enhanced by applying PReLU and residual learning. This results in the creation of four deep learning modules tailored to the dataset built from the four cameras. The performance of the proposed deep learning network for quality inspection in the multi-camera inline inspection system for pharmaceutical containers was evaluated through experiments conducted by a certified testing agency. The results show that the deep learning modules achieved a classification accuracy of 99.4%, exceeding the world-class level of 95%, and an average classification speed of 0.947 seconds, which is superior to the world-class level of 1 second. Therefore, the effectiveness of the proposed deep learning network for quality inspection in a multi-camera inline inspection system for pharmaceutical containers has been demonstrated.

Korean Coreference Resolution with Guided Mention Pair Model Using Deep Learning

  • Park, Cheoneum;Choi, Kyoung-Ho;Lee, Changki;Lim, Soojong
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1207-1217
    • /
    • 2016
  • The general method of machine learning has encountered disadvantages in terms of the significant amount of time and effort required for feature extraction and engineering in natural language processing. However, in recent years, these disadvantages have been solved using deep learning. In this paper, we propose a mention pair (MP) model using deep learning, and a system that combines both rule-based and deep learning-based systems using a guided MP as a coreference resolution, which is an information extraction technique. Our experiment results confirm that the proposed deep-learning based coreference resolution system achieves a better level of performance than rule- and statistics-based systems applied separately

Detection of Moving Direction using PIR Sensors and Deep Learning Algorithm

  • Woo, Jiyoung;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.11-17
    • /
    • 2019
  • In this paper, we propose a method to recognize the moving direction in the indoor environment by using the sensing system equipped with passive infrared (PIR) sensors and a deep learning algorithm. A PIR sensor generates a signal that can be distinguished according to the direction of movement of the user. A sensing system with four PIR sensors deployed by $45^{\circ}$ increments is developed and installed in the ceiling of the room. The PIR sensor signals from 6 users with 10-time experiments for 8 directions were collected. We extracted the raw data sets and performed experiments varying the number of sensors fed into the deep learning algorithm. The proposed sensing system using deep learning algorithm can recognize the users' moving direction by 99.2 %. In addition, with only one PIR senor, the recognition accuracy reaches 98.4%.

Development of Deep Learning based waste Detection vision system (Deep Learning 기반의 폐기물 선별 Vision 시스템 개발)

  • Bong-Seok Han;Hyeok-Won Kwon;Bong-Cheol Shin
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.60-66
    • /
    • 2022
  • Recently, with the development of industry and the improvement of living standards, various wastes are generated along with the production of various products. Most of these wastes are used as containers for products, and plastic or aluminum is used. Various attempts are being made to automate the classification of these wastes due to the high labor cost, but most of them are solved by manpower due to the geometrical shape change due to the nature of the waste. In this study, in order to automate the waste sorting task, Deep Learning technology is applied to a robot system for waste sorting and a vision system for waste sorting to effectively perform sorting tasks according to the shape of waste. As a result of the experiment, a Deep Learning parameter suitable for waste sorting was selected. In addition, through various experiments, it was confirmed that 99% of wastes could be selected in individual & group image learning. It is expected that this will enable automation of the waste sorting operation.

Design and Implementation of Agent-Recruitment Service System based on Collaborative Deep Learning for the Intelligent Head Hunting Service (지능형 헤드헌팅 서비스를 위한 협업 딥 러닝 기반의 중개 채용 서비스 시스템 설계 및 구현)

  • Lee, Hyun-ho;Lee, Won-jin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.343-350
    • /
    • 2020
  • In the era of the Fourth Industrial Revolution in the digital revolution is taking place, various attempts have been made to provide various contents in a digital environment. In this paper, agent-recruitment service system based on collaborative deep learning is proposed for the intelligent head hunting service. The service system is improved from previous research [7] using collaborative deep learning for more reliable recommendation results. The Collaborative deep learning is a hybrid recommendation algorithm using "Recurrent Neural Network(RNN)" specialized for exponential calculation, "collaborative filtering" which is traditional recommendation filtering methods, and "KNN-Clustering" for similar user analysis. The proposed service system can expect more reliable recommendation results than previous research and showed high satisfaction in user survey for verification.