• Title/Summary/Keyword: Deep Learning Models

Search Result 1,318, Processing Time 0.031 seconds

Bark Identification Using a Deep Learning Model (심층 학습 모델을 이용한 수피 인식)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1133-1141
    • /
    • 2019
  • Most of the previous studies for bark recognition have focused on the extraction of LBP-like statistical features. Deep learning approach was not well studied because of the difficulty of acquiring large volume of bark image dataset. To overcome the bark dataset problem, this study utilizes the MobileNet which was trained with the ImageNet dataset. This study proposes two approaches. One is to extract features by the pixel-wise convolution and classify the features with SVM. The other is to tune the weights of the MobileNet by flexibly freezing layers. The experimental results with two public bark datasets, BarkTex and Trunk12, show that the proposed methods are effective in bark recognition. Especially the results of the flexible tunning method outperform state-of-the-art methods. In addition, it can be applied to mobile devices because the MobileNet is compact compared to other deep learning models.

A Manually Captured and Modified Phone Screen Image Dataset for Widget Classification on CNNs

  • Byun, SungChul;Han, Seong-Soo;Jeong, Chang-Sung
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.197-207
    • /
    • 2022
  • The applications and user interfaces (UIs) of smart mobile devices are constantly diversifying. For example, deep learning can be an innovative solution to classify widgets in screen images for increasing convenience. To this end, the present research leverages captured images and the ReDraw dataset to write deep learning datasets for image classification purposes. First, as the validation for datasets using ResNet50 and EfficientNet, the experiments show that the dataset composed in this study is helpful for classification according to a widget's functionality. An implementation for widget detection and classification on RetinaNet and EfficientNet is then executed. Finally, the research suggests the Widg-C and Widg-D datasets-a deep learning dataset for identifying the widgets of smart devices-and implementing them for use with representative convolutional neural network models.

Detecting Adversarial Examples Using Edge-based Classification

  • Jaesung Shim;Kyuri Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.67-76
    • /
    • 2023
  • Although deep learning models are making innovative achievements in the field of computer vision, the problem of vulnerability to adversarial examples continues to be raised. Adversarial examples are attack methods that inject fine noise into images to induce misclassification, which can pose a serious threat to the application of deep learning models in the real world. In this paper, we propose a model that detects adversarial examples using differences in predictive values between edge-learned classification models and underlying classification models. The simple process of extracting the edges of the objects and reflecting them in learning can increase the robustness of the classification model, and economical and efficient detection is possible by detecting adversarial examples through differences in predictions between models. In our experiments, the general model showed accuracy of {49.9%, 29.84%, 18.46%, 4.95%, 3.36%} for adversarial examples (eps={0.02, 0.05, 0.1, 0.2, 0.3}), whereas the Canny edge model showed accuracy of {82.58%, 65.96%, 46.71%, 24.94%, 13.41%} and other edge models showed a similar level of accuracy also, indicating that the edge model was more robust against adversarial examples. In addition, adversarial example detection using differences in predictions between models revealed detection rates of {85.47%, 84.64%, 91.44%, 95.47%, and 87.61%} for each epsilon-specific adversarial example. It is expected that this study will contribute to improving the reliability of deep learning models in related research and application industries such as medical, autonomous driving, security, and national defense.

Comparison of Deep Learning-based Unsupervised Domain Adaptation Models for Crop Classification (작물 분류를 위한 딥러닝 기반 비지도 도메인 적응 모델 비교)

  • Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.199-213
    • /
    • 2022
  • The unsupervised domain adaptation can solve the impractical issue of repeatedly collecting high-quality training data every year for annual crop classification. This study evaluates the applicability of deep learning-based unsupervised domain adaptation models for crop classification. Three unsupervised domain adaptation models including a deep adaptation network (DAN), a deep reconstruction-classification network, and a domain adversarial neural network (DANN) are quantitatively compared via a crop classification experiment using unmanned aerial vehicle images in Hapcheon-gun and Changnyeong-gun, the major garlic and onion cultivation areas in Korea. As source baseline and target baseline models, convolutional neural networks (CNNs) are additionally applied to evaluate the classification performance of the unsupervised domain adaptation models. The three unsupervised domain adaptation models outperformed the source baseline CNN, but the different classification performances were observed depending on the degree of inconsistency between data distributions in source and target images. The classification accuracy of DAN was higher than that of the other two models when the inconsistency between source and target images was low, whereas DANN has the best classification performance when the inconsistency between source and target images was high. Therefore, the extent to which data distributions of the source and target images match should be considered to select the best unsupervised domain adaptation model to generate reliable classification results.

Malaysian Name-based Ethnicity Classification using LSTM

  • Hur, Youngbum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3855-3867
    • /
    • 2022
  • Name separation (splitting full names into surnames and given names) is not a tedious task in a multiethnic country because the procedure for splitting surnames and given names is ethnicity-specific. Malaysia has multiple main ethnic groups; therefore, separating Malaysian full names into surnames and given names proves a challenge. In this study, we develop a two-phase framework for Malaysian name separation using deep learning. In the initial phase, we predict the ethnicity of full names. We propose a recurrent neural network with long short-term memory network-based model with character embeddings for prediction. Based on the predicted ethnicity, we use a rule-based algorithm for splitting full names into surnames and given names in the second phase. We evaluate the performance of the proposed model against various machine learning models and demonstrate that it outperforms them by an average of 9%. Moreover, transfer learning and fine-tuning of the proposed model with an additional dataset results in an improvement of up to 7% on average.

A Study on Classification Performance Analysis of Convolutional Neural Network using Ensemble Learning Algorithm (앙상블 학습 알고리즘을 이용한 컨벌루션 신경망의 분류 성능 분석에 관한 연구)

  • Park, Sung-Wook;Kim, Jong-Chan;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.6
    • /
    • pp.665-675
    • /
    • 2019
  • In this paper, we compare and analyze the classification performance of deep learning algorithm Convolutional Neural Network(CNN) ac cording to ensemble generation and combining techniques. We used several CNN models(VGG16, VGG19, DenseNet121, DenseNet169, DenseNet201, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, GoogLeNet) to create 10 ensemble generation combinations and applied 6 combine techniques(average, weighted average, maximum, minimum, median, product) to the optimal combination. Experimental results, DenseNet169-VGG16-GoogLeNet combination in ensemble generation, and the product rule in ensemble combination showed the best performance. Based on this, it was concluded that ensemble in different models of high benchmarking scores is another way to get good results.

Comparison of Deep Learning-based CNN Models for Crack Detection (콘크리트 균열 탐지를 위한 딥 러닝 기반 CNN 모델 비교)

  • Seol, Dong-Hyeon;Oh, Ji-Hoon;Kim, Hong-Jin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.3
    • /
    • pp.113-120
    • /
    • 2020
  • The purpose of this study is to compare the models of Deep Learning-based Convolution Neural Network(CNN) for concrete crack detection. The comparison models are AlexNet, GoogLeNet, VGG16, VGG19, ResNet-18, ResNet-50, ResNet-101, and SqueezeNet which won ImageNet Large Scale Visual Recognition Challenge(ILSVRC). To train, validate and test these models, we constructed 3000 training data and 12000 validation data with 256×256 pixel resolution consisting of cracked and non-cracked images, and constructed 5 test data with 4160×3120 pixel resolution consisting of concrete images with crack. In order to increase the efficiency of the training, transfer learning was performed by taking the weight from the pre-trained network supported by MATLAB. From the trained network, the validation data is classified into crack image and non-crack image, yielding True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN), and 6 performance indicators, False Negative Rate (FNR), False Positive Rate (FPR), Error Rate, Recall, Precision, Accuracy were calculated. The test image was scanned twice with a sliding window of 256×256 pixel resolution to classify the cracks, resulting in a crack map. From the comparison of the performance indicators and the crack map, it was concluded that VGG16 and VGG19 were the most suitable for detecting concrete cracks.

Prediction of Chest Deflection Using Frontal Impact Test Results and Deep Learning Model (정면충돌 시험결과와 딥러닝 모델을 이용한 흉부변형량의 예측)

  • Kwon-Hee Lee;Jaemoon Lim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.1
    • /
    • pp.55-62
    • /
    • 2023
  • In this study, a chest deflection is predicted by introducing a deep learning technique with the results of the frontal impact of the USNCAP conducted for 110 car models from MY2018 to MY2020. The 120 data are divided into training data and test data, and the training data is divided into training data and validation data to determine the hyperparameters. In this process, the deceleration data of each vehicle is averaged in units of 10 ms from crash pulses measured up to 100 ms. The performance of the deep learning model is measured by the indices of the mean squared error and the mean absolute error on the test data. A DNN (Deep Neural Network) model can give different predictions for the same hyperparameter values at every run. Considering this, the mean and standard deviation of the MSE (Mean Squared Error) and the MAE (Mean Absolute Error) are calculated. In addition, the deep learning model performance according to the inclusion of CVW (Curb Vehicle Weight) is also reviewed.

Change Detection of Building Objects in Urban Area by Using Transfer Learning (전이학습을 활용한 도시지역 건물객체의 변화탐지)

  • Mo, Jun-sang;Seong, Seon-kyeong;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1685-1695
    • /
    • 2021
  • To generate a deep learning model with high performance, a large training dataset should be required. However, it requires a lot of time and cost to generate a large training dataset in remote sensing. Therefore, the importance of transfer learning of deep learning model using a small dataset have been increased. In this paper, we performed transfer learning of trained model based on open datasets by using orthoimages and digital maps to detect changes of building objects in multitemporal orthoimages. For this, an initial training was performed on open dataset for change detection through the HRNet-v2 model, and transfer learning was performed on dataset by orthoimages and digital maps. To analyze the effect of transfer learning, change detection results of various deep learning models including deep learning model by transfer learning were evaluated at two test sites. In the experiments, results by transfer learning represented best accuracy, compared to those by other deep learning models. Therefore, it was confirmed that the problem of insufficient training dataset could be solved by using transfer learning, and the change detection algorithm could be effectively applied to various remote sensed imagery.

A Survey on Vision Transformers for Object Detection Task (객체 탐지 과업에서의 트랜스포머 기반 모델의 특장점 분석 연구)

  • Jungmin, Ha;Hyunjong, Lee;Jungmin, Eom;Jaekoo, Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.319-327
    • /
    • 2022
  • Transformers are the most famous deep learning models that has achieved great success in natural language processing and also showed good performance on computer vision. In this survey, we categorized transformer-based models for computer vision, particularly object detection tasks and perform comprehensive comparative experiments to understand the characteristics of each model. Next, we evaluated the models subdivided into standard transformer, with key point attention, and adding attention with coordinates by performance comparison in terms of object detection accuracy and real-time performance. For performance comparison, we used two metrics: frame per second (FPS) and mean average precision (mAP). Finally, we confirmed the trends and relationships related to the detection and real-time performance of objects in several transformer models using various experiments.