• Title/Summary/Keyword: Deep Learning Model

Search Result 2,696, Processing Time 0.031 seconds

CNN model transition learning comparative analysis based on deep learning for image classification (이미지 분류를 위한 딥러닝 기반 CNN모델 전이 학습 비교 분석)

  • Lee, Dong-jun;Jeon, Seung-Je;Lee, DongHwi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.370-373
    • /
    • 2022
  • Recently, various deep learning framework models such as Tensorflow, Pytorch, Keras, etc. have appeared. In addition, CNN (Convolutional Neural Network) is applied to image recognition using frameworks such as Tensorflow, Pytorch, and Keras, and the optimization model in image classification is mainly used. In this paper, based on the results of training the CNN model with the Paitotchi and tensor flow frameworks most often used in the field of deep learning image recognition, the two frameworks are compared and analyzed for image analysis. Derived an optimized framework.

  • PDF

Accelerating Magnetic Resonance Fingerprinting Using Hybrid Deep Learning and Iterative Reconstruction

  • Cao, Peng;Cui, Di;Ming, Yanzhen;Vardhanabhuti, Varut;Lee, Elaine;Hui, Edward
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.293-299
    • /
    • 2021
  • Purpose: To accelerate magnetic resonance fingerprinting (MRF) by developing a flexible deep learning reconstruction method. Materials and Methods: Synthetic data were used to train a deep learning model. The trained model was then applied to MRF for different organs and diseases. Iterative reconstruction was performed outside the deep learning model, allowing a changeable encoding matrix, i.e., with flexibility of choice for image resolution, radiofrequency coil, k-space trajectory, and undersampling mask. In vivo experiments were performed on normal brain and prostate cancer volunteers to demonstrate the model performance and generalizability. Results: In 400-dynamics brain MRF, direct nonuniform Fourier transform caused a slight increase of random fluctuations on the T2 map. These fluctuations were reduced with the proposed method. In prostate MRF, the proposed method suppressed fluctuations on both T1 and T2 maps. Conclusion: The deep learning and iterative MRF reconstruction method described in this study was flexible with different acquisition settings such as radiofrequency coils. It is generalizable for different in vivo applications.

Image-based ship detection using deep learning

  • Lee, Sung-Jun;Roh, Myung-Il;Oh, Min-Jae
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.415-434
    • /
    • 2020
  • Detecting objects is important for the safe operation of ships, and enables collision avoidance, risk detection, and autonomous sailing. This study proposes a ship detection method from images and videos taken at sea using one of the state-of-the-art deep neural network-based object detection algorithms. A deep learning model is trained using a public maritime dataset, and results show it can detect all types of floating objects and classify them into ten specific classes that include a ship, speedboat, and buoy. The proposed deep learning model is compared to a universal trained model that detects and classifies objects into general classes, such as a person, dog, car, and boat, and results show that the proposed model outperforms the other in the detection of maritime objects. Different deep neural network structures are then compared to obtain the best detection performance. The proposed model also shows a real-time detection speed of approximately 30 frames per second. Hence, it is expected that the proposed model can be used to detect maritime objects and reduce risks while at sea.

Research Trends on Deep Learning for Anomaly Detection of Aviation Safety (딥러닝 기반 항공안전 이상치 탐지 기술 동향)

  • Park, N.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.5
    • /
    • pp.82-91
    • /
    • 2021
  • This study reviews application of data-driven anomaly detection techniques to the aviation domain. Recent advances in deep learning have inspired significant anomaly detection research, and numerous methods have been proposed. However, some of these advances have not yet been explored in aviation systems. After briefly introducing aviation safety issues, data-driven anomaly detection models are introduced. Along with traditional statistical and well-established machine learning models, the state-of-the-art deep learning models for anomaly detection are reviewed. In particular, the pros and cons of hybrid techniques that incorporate an existing model and a deep model are reviewed. The characteristics and applications of deep learning models are described, and the possibility of applying deep learning methods in the aviation field is discussed.

A Deep Learning Approach for Classification of Cloud Image Patches on Small Datasets

  • Phung, Van Hiep;Rhee, Eun Joo
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.173-178
    • /
    • 2018
  • Accurate classification of cloud images is a challenging task. Almost all the existing methods rely on hand-crafted feature extraction. Their limitation is low discriminative power. In the recent years, deep learning with convolution neural networks (CNNs), which can auto extract features, has achieved promising results in many computer vision and image understanding fields. However, deep learning approaches usually need large datasets. This paper proposes a deep learning approach for classification of cloud image patches on small datasets. First, we design a suitable deep learning model for small datasets using a CNN, and then we apply data augmentation and dropout regularization techniques to increase the generalization of the model. The experiments for the proposed approach were performed on SWIMCAT small dataset with k-fold cross-validation. The experimental results demonstrated perfect classification accuracy for most classes on every fold, and confirmed both the high accuracy and the robustness of the proposed model.

High-performance of Deep learning Colorization With Wavelet fusion (웨이블릿 퓨전에 의한 딥러닝 색상화의 성능 향상)

  • Kim, Young-Back;Choi, Hyun;Cho, Joong-Hwee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.313-319
    • /
    • 2018
  • We propose a post-processing algorithm to improve the quality of the RGB image generated by deep learning based colorization from the gray-scale image of an infrared camera. Wavelet fusion is used to generate a new luminance component of the RGB image luminance component from the deep learning model and the luminance component of the infrared camera. PSNR is increased for all experimental images by applying the proposed algorithm to RGB images generated by two deep learning models of SegNet and DCGAN. For the SegNet model, the average PSNR is improved by 1.3906dB at level 1 of the Haar wavelet method. For the DCGAN model, PSNR is improved 0.0759dB on the average at level 5 of the Daubechies wavelet method. It is also confirmed that the edge components are emphasized by the post-processing and the visibility is improved.

A Study on the Efficacy of Edge-Based Adversarial Example Detection Model: Across Various Adversarial Algorithms

  • Jaesung Shim;Kyuri Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.31-41
    • /
    • 2024
  • Deep learning models show excellent performance in tasks such as image classification and object detection in the field of computer vision, and are used in various ways in actual industrial sites. Recently, research on improving robustness has been actively conducted, along with pointing out that this deep learning model is vulnerable to hostile examples. A hostile example is an image in which small noise is added to induce misclassification, and can pose a significant threat when applying a deep learning model to a real environment. In this paper, we tried to confirm the robustness of the edge-learning classification model and the performance of the adversarial example detection model using it for adversarial examples of various algorithms. As a result of robustness experiments, the basic classification model showed about 17% accuracy for the FGSM algorithm, while the edge-learning models maintained accuracy in the 60-70% range, and the basic classification model showed accuracy in the 0-1% range for the PGD/DeepFool/CW algorithm, while the edge-learning models maintained accuracy in 80-90%. As a result of the adversarial example detection experiment, a high detection rate of 91-95% was confirmed for all algorithms of FGSM/PGD/DeepFool/CW. By presenting the possibility of defending against various hostile algorithms through this study, it is expected to improve the safety and reliability of deep learning models in various industries using computer vision.

Is it possible to forecast KOSPI direction using deep learning methods?

  • Choi, Songa;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.4
    • /
    • pp.329-338
    • /
    • 2021
  • Deep learning methods have been developed, used in various fields, and they have shown outstanding performances in many cases. Many studies predicted a daily stock return, a classic example of time-series data, using deep learning methods. We also tried to apply deep learning methods to Korea's stock market data. We used Korea's stock market index (KOSPI) and several individual stocks to forecast daily returns and directions. We compared several deep learning models with other machine learning methods, including random forest and XGBoost. In regression, long short term memory (LSTM) and gated recurrent unit (GRU) models are better than other prediction models. For the classification applications, there is no clear winner. However, even the best deep learning models cannot predict significantly better than the simple base model. We believe that it is challenging to predict daily stock return data even if we use the latest deep learning methods.

Text Classification on Social Network Platforms Based on Deep Learning Models

  • YA, Chen;Tan, Juan;Hoekyung, Jung
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • The natural language on social network platforms has a certain front-to-back dependency in structure, and the direct conversion of Chinese text into a vector makes the dimensionality very high, thereby resulting in the low accuracy of existing text classification methods. To this end, this study establishes a deep learning model that combines a big data ultra-deep convolutional neural network (UDCNN) and long short-term memory network (LSTM). The deep structure of UDCNN is used to extract the features of text vector classification. The LSTM stores historical information to extract the context dependency of long texts, and word embedding is introduced to convert the text into low-dimensional vectors. Experiments are conducted on the social network platforms Sogou corpus and the University HowNet Chinese corpus. The research results show that compared with CNN + rand, LSTM, and other models, the neural network deep learning hybrid model can effectively improve the accuracy of text classification.

A Study on Maritime Object Image Classification Using a Pruning-Based Lightweight Deep-Learning Model (가지치기 기반 경량 딥러닝 모델을 활용한 해상객체 이미지 분류에 관한 연구)

  • Younghoon Han;Chunju Lee;Jaegoo Kang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.346-354
    • /
    • 2024
  • Deep learning models require high computing power due to a substantial amount of computation. It is difficult to use them in devices with limited computing environments, such as coastal surveillance equipments. In this study, a lightweight model is constructed by analyzing the weight changes of the convolutional layers during the training process based on MobileNet and then pruning the layers that affects the model less. The performance comparison results show that the lightweight model maintains performance while reducing computational load, parameters, model size, and data processing speed. As a result of this study, an effective pruning method for constructing lightweight deep learning models and the possibility of using equipment resources efficiently through lightweight models in limited computing environments such as coastal surveillance equipments are presented.