• 제목/요약/키워드: Deep Learning Model

검색결과 2,696건 처리시간 0.032초

Classification of Mouse Lung Metastatic Tumor with Deep Learning

  • Lee, Ha Neul;Seo, Hong-Deok;Kim, Eui-Myoung;Han, Beom Seok;Kang, Jin Seok
    • Biomolecules & Therapeutics
    • /
    • 제30권2호
    • /
    • pp.179-183
    • /
    • 2022
  • Traditionally, pathologists microscopically examine tissue sections to detect pathological lesions; the many slides that must be evaluated impose severe work burdens. Also, diagnostic accuracy varies by pathologist training and experience; better diagnostic tools are required. Given the rapid development of computer vision, automated deep learning is now used to classify microscopic images, including medical images. Here, we used a Inception-v3 deep learning model to detect mouse lung metastatic tumors via whole slide imaging (WSI); we cropped the images to 151 by 151 pixels. The images were divided into training (53.8%) and test (46.2%) sets (21,017 and 18,016 images, respectively). When images from lung tissue containing tumor tissues were evaluated, the model accuracy was 98.76%. When images from normal lung tissue were evaluated, the model accuracy ("no tumor") was 99.87%. Thus, the deep learning model distinguished metastatic lesions from normal lung tissue. Our approach will allow the rapid and accurate analysis of various tissues.

딥러닝을 이용한 나노소재 투과전자 현미경의 초해상 이미지 획득 (Super-Resolution Transmission Electron Microscope Image of Nanomaterials Using Deep Learning)

  • 남충희
    • 한국재료학회지
    • /
    • 제32권8호
    • /
    • pp.345-353
    • /
    • 2022
  • In this study, using deep learning, super-resolution images of transmission electron microscope (TEM) images were generated for nanomaterial analysis. 1169 paired images with 256 × 256 pixels (high resolution: HR) from TEM measurements and 32 × 32 pixels (low resolution: LR) produced using the python module openCV were trained with deep learning models. The TEM images were related to DyVO4 nanomaterials synthesized by hydrothermal methods. Mean-absolute-error (MAE), peak-signal-to-noise-ratio (PSNR), and structural similarity (SSIM) were used as metrics to evaluate the performance of the models. First, a super-resolution image (SR) was obtained using the traditional interpolation method used in computer vision. In the SR image at low magnification, the shape of the nanomaterial improved. However, the SR images at medium and high magnification failed to show the characteristics of the lattice of the nanomaterials. Second, to obtain a SR image, the deep learning model includes a residual network which reduces the loss of spatial information in the convolutional process of obtaining a feature map. In the process of optimizing the deep learning model, it was confirmed that the performance of the model improved as the number of data increased. In addition, by optimizing the deep learning model using the loss function, including MAE and SSIM at the same time, improved results of the nanomaterial lattice in SR images were achieved at medium and high magnifications. The final proposed deep learning model used four residual blocks to obtain the characteristic map of the low-resolution image, and the super-resolution image was completed using Upsampling2D and the residual block three times.

병원 외래환자수의 예측을 위한 시계열 데이터처리 딥러닝 시스템 (Time Series Data Processing Deep Learning system for Prediction of Hospital Outpatient Number)

  • 조준모
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.313-318
    • /
    • 2021
  • 딥러닝 기술의 도래로 인하여 수많은 산업과 일반적인 응용에 적용됨으로써 우리의 생활에 큰 영향을 발휘하고 있다. 특정한 분야의 문제를 해결하기 위해서는 그 문제에 적합한 딥러닝 모델을 작성해야 한다. 근래에는 COVID-19 사태로 인하여 다양한 문제들을 딥러닝으로 해결하고자 하는 사례들이 늘고 있다. 이러한 일환으로 본 논문에서는 갑자기 급증할 수 있는 병원의 외래환자들을 미리 예측을 위한 시계열의 딥러닝 모델을 제시하고자 한다. 제시하는 딥러닝 모델은 주피터 노트북에서 케라스로 작성하였다. 예측결과는 실제 데이터와 그래프로 비교하며 유효성 데이터를 활용하여 과소적합과 과대적합의 여부를 손실률로 분석할 수 있도록 하였다.

딥러닝 모델을 이용한 비전이미지 내의 대상체 분류에 관한 연구 (A Study on The Classification of Target-objects with The Deep-learning Model in The Vision-images)

  • 조영준;김종원
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.20-25
    • /
    • 2021
  • 본 논문은 Deep-learning 기반의 검출모델을 이용하여 연속적으로 입력되는 비디오 이미지 내의 해당 대상체를 의미별로 분류해야하는 문제에 대한 구현방법에 관한 논문이다. 기존의 대상체 검출모델은 Deep-learning 기반의 검출모델로서 유사한 대상체 분류를 위해서는 방대한 DATA의 수집과 기계학습과정을 통해서 가능했다. 대상체 검출모델의 구조개선을 통한 유사물체의 인식 및 분류를 위하여 기존의 검출모델을 이용한 분류 문제를 분석하고 처리구조를 변경하여 개선된 비전처리 모듈개발을 통해 이를 기존 인식모델에 접목함으로써 대상체에 대한 인식모델을 구현하였으며, 대상체의 분류를 위하여 검출모델의 구조변경을 통해 고유성과 유사성을 정의하고 이를 검출모델에 적용하였다. 실제 축구경기 영상을 이용하여 대상체의 특징점을 분류의 기준으로 설정하여 실시간으로 분류문제를 해결하여 인식모델의 활용성 검증을 통해 산업에서의 활용도를 확인하였다. 기존의 검출모델과 새롭게 구성한 인식모델을 활용하여 실시간 이미지를 색상과 강도의 구분이 용이한 HSV의 칼라공간으로 변환하는 비전기술을 이용하여 기존모델과 비교 검증하였고, 조도 및 노이즈 환경에서도 높은 검출률을 확보할 수 있는 실시간 환경의 인식모델 최적화를 위한 선행연구를 수행하였다.

Deep Learning in Dental Radiographic Imaging

  • Hyuntae Kim
    • 대한소아치과학회지
    • /
    • 제51권1호
    • /
    • pp.1-10
    • /
    • 2024
  • Deep learning algorithms are becoming more prevalent in dental research because they are utilized in everyday activities. However, dental researchers and clinicians find it challenging to interpret deep learning studies. This review aimed to provide an overview of the general concept of deep learning and current deep learning research in dental radiographic image analysis. In addition, the process of implementing deep learning research is described. Deep-learning-based algorithmic models perform well in classification, object detection, and segmentation tasks, making it possible to automatically diagnose oral lesions and anatomical structures. The deep learning model can enhance the decision-making process for researchers and clinicians. This review may be useful to dental researchers who are currently evaluating and assessing deep learning studies in the field of dentistry.

Korean Coreference Resolution with Guided Mention Pair Model Using Deep Learning

  • Park, Cheoneum;Choi, Kyoung-Ho;Lee, Changki;Lim, Soojong
    • ETRI Journal
    • /
    • 제38권6호
    • /
    • pp.1207-1217
    • /
    • 2016
  • The general method of machine learning has encountered disadvantages in terms of the significant amount of time and effort required for feature extraction and engineering in natural language processing. However, in recent years, these disadvantages have been solved using deep learning. In this paper, we propose a mention pair (MP) model using deep learning, and a system that combines both rule-based and deep learning-based systems using a guided MP as a coreference resolution, which is an information extraction technique. Our experiment results confirm that the proposed deep-learning based coreference resolution system achieves a better level of performance than rule- and statistics-based systems applied separately

Predicting bond strength of corroded reinforcement by deep learning

  • Tanyildizi, Harun
    • Computers and Concrete
    • /
    • 제29권3호
    • /
    • pp.145-159
    • /
    • 2022
  • In this study, the extreme learning machine and deep learning models were devised to estimate the bond strength of corroded reinforcement in concrete. The six inputs and one output were used in this study. The compressive strength, concrete cover, bond length, steel type, diameter of steel bar, and corrosion level were selected as the input variables. The results of bond strength were used as the output variable. Moreover, the Analysis of variance (Anova) was used to find the effect of input variables on the bond strength of corroded reinforcement in concrete. The prediction results were compared to the experimental results and each other. The extreme learning machine and the deep learning models estimated the bond strength by 99.81% and 99.99% accuracy, respectively. This study found that the deep learning model can be estimated the bond strength of corroded reinforcement with higher accuracy than the extreme learning machine model. The Anova results found that the corrosion level was found to be the input variable that most affects the bond strength of corroded reinforcement in concrete.

CNN기반 상품분류 딥러닝모델을 위한 학습데이터 영향 실증 분석 (Empirical Study on Analyzing Training Data for CNN-based Product Classification Deep Learning Model)

  • 이나경;김주연;심준호
    • 한국전자거래학회지
    • /
    • 제26권1호
    • /
    • pp.107-126
    • /
    • 2021
  • 전자상거래에서 상품 정보에 따른 신속하고 정확한 자동 상품 분류는 중요하다. 최근의 딥러닝 기술 발전은 자동 상품 분류에도 적용이 시도되고 있다. 성능이 우수한 딥러닝 모델개발에 있어, 학습 데이터의 품질과 모델에 적합한 데이터 전처리는 중요하다. 본 연구에서는, 텍스트 상품 데이터를 기반으로 카테고리를 자동 유추할 때, 데이터의 전처리 정도에 따른 영향력과 학습 데이터 선택 범위 영향력을 CNN모델을 사례 모델로 이용하여 비교 분석한다. 실험 분석에 사용한 데이터는 실제 데이터를 사용하여 연구 결과의 실증을 담보하였다. 본 연구가 도출한 실증 분석 및 결과는 딥러닝 상품 분류 모델 개발 시 성능 향상을 위한 레퍼런스로서 의의가 있다.

CT 정도관리에서 ACR 팬텀을 이용한 딥러닝 모델 적용에 관한 연구 (A Study on the Application of Deep Learning Model by Using ACR Phantom in CT Quality Control)

  • 최은빈;김시온;최승원;김재희;김영균;한동균
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권6호
    • /
    • pp.535-542
    • /
    • 2023
  • This study aimed to implement a deep learning model that can perform quantitative quality control through ACTS software used for quantitative evaluation of ACR phantom in CT quality control and evaluate its usefulness. By changing the scanning conditions, images of three modules of the ACR phantom's slice thickness (ST), low contrast resolution (LC), and high contrast resolution (HC) were obtained and classified as ACTS software. The deep learning model used ResNet18, implementing three models in which ST, HC, and LC were learned with epoch 50 and an integrated model in which three modules were learned with Epoch 10, 30, and 50 at once. The performance of each model was evaluated through Accuracy and Loss. When comparing and evaluating the accuracy and loss function values of the deep learning models by ST, LC, and HC modules, the Accuracy and Loss of the HC model were the best with 100% and 0.0081, and in the integrated model according to the Epoch value, Accuracy and Loss with epoch 50 were the best with 96.29% and 0.1856. This paper showed that quantitative quality control is possible through a deep learning model, and it can be used as a basis and evidence for applying deep learning to the CT quality control.

A Study of Video-Based Abnormal Behavior Recognition Model Using Deep Learning

  • Lee, Jiyoo;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.115-119
    • /
    • 2020
  • Recently, CCTV installations are rapidly increasing in the public and private sectors to prevent various crimes. In accordance with the increasing number of CCTVs, video-based abnormal behavior detection in control systems is one of the key technologies for safety. This is because it is difficult for the surveillance personnel who control multiple CCTVs to manually monitor all abnormal behaviors in the video. In order to solve this problem, research to recognize abnormal behavior using deep learning is being actively conducted. In this paper, we propose a model for detecting abnormal behavior based on the deep learning model that is currently widely used. Based on the abnormal behavior video data provided by AI Hub, we performed a comparative experiment to detect anomalous behavior through violence learning and fainting in videos using 2D CNN-LSTM, 3D CNN, and I3D models. We hope that the experimental results of this abnormal behavior learning model will be helpful in developing intelligent CCTV.