• Title/Summary/Keyword: Deep Learning Convergence Study

Search Result 321, Processing Time 0.026 seconds

Design and Implementation of Reinforcement Learning Agent Using PPO Algorithim for Match 3 Gameplay (매치 3 게임 플레이를 위한 PPO 알고리즘을 이용한 강화학습 에이전트의 설계 및 구현)

  • Park, Dae-Geun;Lee, Wan-Bok
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2021
  • Most of the match-3 puzzle games supports automatic play using the MCTS algorithm. However, implementing reinforcement learning agents is not an easy job because it requires both the knowledge of machine learning and the way of complex interactions within the development environment. This study proposes a method in which we can easily design reinforcement learning agents and implement game play agents by applying PPO(Proximal Policy Optimization) algorithms. And we could identify the performance was increased about 44% than the conventional method. The tools we used are the Unity 3D game engine and Unity ML SDK. The experimental result shows that agents became to learn game rules and make better strategic decisions as experiments go on. On average, the puzzle gameplay agents implemented in this study played puzzle games better than normal people. It is expected that the designed agent could be used to speed up the game level design process.

A Study on Algorithm Selection and Comparison for Improving the Performance of an Artificial Intelligence Product Recognition Automatic Payment System

  • Kim, Heeyoung;Kim, Dongmin;Ryu, Gihwan;Hong, Hotak
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.230-235
    • /
    • 2022
  • This study is to select an optimal object detection algorithm for designing a self-checkout counter to improve the inconvenience of payment systems for products without existing barcodes. To this end, a performance comparison analysis of YOLO v2, Tiny YOLO v2, and the latest YOLO v5 among deep learning-based object detection algorithms was performed to derive results. In this paper, performance comparison was conducted by forming learning data as an example of 'donut' in a bakery store, and the performance result of YOLO v5 was the highest at 96.9% of mAP. Therefore, YOLO v5 was selected as the artificial intelligence object detection algorithm to be applied in this paper. As a result of performance analysis, when the optimal threshold was set for each donut, the precision and reproduction rate of all donuts exceeded 0.85, and the majority of donuts showed excellent recognition performance of 0.90 or more. We expect that the results of this paper will be helpful as the fundamental data for the development of an automatic payment system using AI self-service technology that is highly usable in the non-face-to-face era.

Artificial Intelligence Applications to Music Composition (인공지능 기반 작곡 프로그램 현황 및 제언)

  • Lee, Sunghoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.261-266
    • /
    • 2018
  • This study aimed to provide an overview of artificial intelligence based music composition programs. The artificial intelligence-based composition program has shown remarkable growth as the development of deep neural network theory and the improvement of big data processing technology. Accordingly, artificial intelligence based composition programs for composing classical music and pop music have been proposed variously in academia and industry. But there are several limitations: devaluation in general populations, missing valuable materials, lack of relevant laws, technology-led industries exclusive to the arts, and so on. When effective measures are taken against these limitations, artificial intelligence based technology will play a significant role in fostering national competitiveness.

A vision-based system for inspection of expansion joints in concrete pavement

  • Jung Hee Lee ;bragimov Eldor ;Heungbae Gil ;Jong-Jae Lee
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.309-318
    • /
    • 2023
  • The appropriate maintenance of highway roads is critical for the safe operation of road networks and conserves maintenance costs. Multiple methods have been developed to investigate the surface of roads for various types of cracks and potholes, among other damage. Like road surface damage, the condition of expansion joints in concrete pavement is important to avoid unexpected hazardous situations. Thus, in this study, a new system is proposed for autonomous expansion joint monitoring using a vision-based system. The system consists of the following three key parts: (1) a camera-mounted vehicle, (2) indication marks on the expansion joints, and (3) a deep learning-based automatic evaluation algorithm. With paired marks indicating the expansion joints in a concrete pavement, they can be automatically detected. An inspection vehicle is equipped with an action camera that acquires images of the expansion joints in the road. You Only Look Once (YOLO) automatically detects the expansion joints with indication marks, which has a performance accuracy of 95%. The width of the detected expansion joint is calculated using an image processing algorithm. Based on the calculated width, the expansion joint is classified into the following two types: normal and dangerous. The obtained results demonstrate that the proposed system is very efficient in terms of speed and accuracy.

A Study on Atmospheric Data Anomaly Detection Algorithm based on Unsupervised Learning Using Adversarial Generative Neural Network (적대적 생성 신경망을 활용한 비지도 학습 기반의 대기 자료 이상 탐지 알고리즘 연구)

  • Yang, Ho-Jun;Lee, Seon-Woo;Lee, Mun-Hyung;Kim, Jong-Gu;Choi, Jung-Mu;Shin, Yu-mi;Lee, Seok-Chae;Kwon, Jang-Woo;Park, Ji-Hoon;Jung, Dong-Hee;Shin, Hye-Jung
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.260-269
    • /
    • 2022
  • In this paper, We propose an anomaly detection model using deep neural network to automate the identification of outliers of the national air pollution measurement network data that is previously performed by experts. We generated training data by analyzing missing values and outliers of weather data provided by the Institute of Environmental Research and based on the BeatGAN model of the unsupervised learning method, we propose a new model by changing the kernel structure, adding the convolutional filter layer and the transposed convolutional filter layer to improve anomaly detection performance. In addition, by utilizing the generative features of the proposed model to implement and apply a retraining algorithm that generates new data and uses it for training, it was confirmed that the proposed model had the highest performance compared to the original BeatGAN models and other unsupervised learning model like Iforest and One Class SVM. Through this study, it was possible to suggest a method to improve the anomaly detection performance of proposed model while avoiding overfitting without additional cost in situations where training data are insufficient due to various factors such as sensor abnormalities and inspections in actual industrial sites.

Prediction of Short and Long-term PV Power Generation in Specific Regions using Actual Converter Output Data (실제 컨버터 출력 데이터를 이용한 특정 지역 태양광 장단기 발전 예측)

  • Ha, Eun-gyu;Kim, Tae-oh;Kim, Chang-bok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.561-569
    • /
    • 2019
  • Solar photovoltaic can provide electrical energy with only radiation, and its use is expanding rapidly as a new energy source. This study predicts the short and long-term PV power generation using actual converter output data of photovoltaic system. The prediction algorithm uses multiple linear regression, support vector machine (SVM), and deep learning such as deep neural network (DNN) and long short-term memory (LSTM). In addition, three models are used according to the input and output structure of the weather element. Long-term forecasts are made monthly, seasonally and annually, and short-term forecasts are made for 7 days. As a result, the deep learning network is better in prediction accuracy than multiple linear regression and SVM. In addition, LSTM, which is a better model for time series prediction than DNN, is somewhat superior in terms of prediction accuracy. The experiment results according to the input and output structure appear Model 2 has less error than Model 1, and Model 3 has less error than Model 2.

Anomaly Detection of Facilities and Non-disruptive Operation of Smart Factory Using Kubernetes

  • Jung, Guik;Ha, Hyunsoo;Lee, Sangjun
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1071-1082
    • /
    • 2021
  • Since the smart factory has been recently recognized as an industrial core requirement, various mechanisms to ensure efficient and stable operation have attracted much attention. This attention is based on the fact that in a smart factory environment where operating processes, such as facility control, data collection, and decision making are automated, the disruption of processes due to problems such as facility anomalies causes considerable losses. Although many studies have considered methods to prevent such losses, few have investigated how to effectively apply the solutions. This study proposes a Kubernetes based system applied in a smart factory providing effective operation and facility management. To develop the system, we employed a useful and popular open source project, and adopted deep learning based anomaly detection model for multi-sensor anomaly detection. This can be easily modified without interruption by changing the container image for inference. Through experiments, we have verified that the proposed method can provide system stability through nondisruptive maintenance, monitoring and non-disruptive updates for anomaly detection models.

A study on intrusion detection performance improvement through imbalanced data processing (불균형 데이터 처리를 통한 침입탐지 성능향상에 관한 연구)

  • Jung, Il Ok;Ji, Jae-Won;Lee, Gyu-Hwan;Kim, Myo-Jeong
    • Convergence Security Journal
    • /
    • v.21 no.3
    • /
    • pp.57-66
    • /
    • 2021
  • As the detection performance using deep learning and machine learning of the intrusion detection field has been verified, the cases of using it are increasing day by day. However, it is difficult to collect the data required for learning, and it is difficult to apply the machine learning performance to reality due to the imbalance of the collected data. Therefore, in this paper, A mixed sampling technique using t-SNE visualization for imbalanced data processing is proposed as a solution to this problem. To do this, separate fields according to characteristics for intrusion detection events, including payload. Extracts TF-IDF-based features for separated fields. After applying the mixed sampling technique based on the extracted features, a data set optimized for intrusion detection with imbalanced data is obtained through data visualization using t-SNE. Nine sampling techniques were applied through the open intrusion detection dataset CSIC2012, and it was verified that the proposed sampling technique improves detection performance through F-score and G-mean evaluation indicators.

A Study on the AI Model for Prediction of Demand for Cold Chain Distribution of Drugs (의약품 콜드체인 유통 수요 예측을 위한 AI 모델에 관한 연구)

  • Hee-young Kim;Gi-hwan Ryu;Jin Cai ;Hyeon-kon Son
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.763-768
    • /
    • 2023
  • In this paper, the existing statistical method (ARIMA) and machine learning method (Informer) were developed and compared to predict the distribution volume of pharmaceuticals. It was found that a machine learning-based model is advantageous for daily data prediction, and it is effective to use ARIMA for monthly prediction and switch to Informer as the data increases. The prediction error rate (RMSE) was reduced by 26.6% compared to the previous method, and the prediction accuracy was improved by 13%, resulting in a result of 86.2%. Through this thesis, we find that there is an advantage of obtaining the best results by ensembleing statistical methods and machine learning methods. In addition, machine learning-based AI models can derive the best results through deep learning operations even in irregular situations, and after commercialization, performance is expected to improve as the amount of data increases.

Design for Safety System get On or Off the Kindergarten Bus using User Authentication based on Deep-learning (딥러닝 기반의 사용자인증을 활용한 어린이 버스에서 안전한 승차 및 하차 시스템 설계)

  • Mun, Hyung-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.5
    • /
    • pp.111-116
    • /
    • 2020
  • Recently, many safety accidents involving children shuttle buses take place. Without a teacher for help, a safety accident occurs when the driver can't see a child who is getting off in the blind spot of both frontside and backside. A deep learning-based smart mirror allows user authentication and provides various services. Especially, It can be a role of helper for children, and prevent accidents that can occur when drivers or assistant teachers do not see them. User authentication is carried out with children's face registered in advance. Safety accidents can be prevented by an approximate sensor and a camera in frontside and backside of the bus. This study suggests a way of checking out whether children are missed in the process of getting in and out of the bus, designs a system that reduce blind spots in the front and back of the vehicle, and builds a safety system that provide various services using GPS.