• 제목/요약/키워드: Deep Learning AI

검색결과 661건 처리시간 0.025초

딥러닝 기반 마스크 미 착용자 검출 기술 (development of face mask detector)

  • 이한성;황찬웅;김종범;장도현;이혜진;임동주;정순기
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.270-272
    • /
    • 2020
  • 본 논문은 코로나 방역의 자동화를 위한 Deep learning 기술 적용에 대해 연구한다. 2020년에 가장 중요한 이슈 중 하나인 COVID-19와 그 방역에 대해 많은 사람들이 IT분야에서 떠오르고 있는 artificial intelligence(AI)에 주목하고 있다. COVID-19로 인해 마스크 착용이 선택이 아닌 필수가 되며, 이를 통제하기 위한 모델이 필요한 상황이다. AI, 그 중에서도 Deep learning의 Object detection 기술을 일상생활 곳곳에 존재하는 영상 장치들에 적용하여 합리적인 비용으로 방역의 실시간 자동화를 구현할 수 있다. 이번 논문에서는 인터넷에 공개되어 있는 사물인식 오픈소스를 활용하여 이를 구현하기 위한 연구를 진행하였다. 또 이를 위한 Dataset 확보에 대한 조사도 진행하였다.

  • PDF

열화상 영상 데이터 기반 배전반 화재 발생 판별을 위한 딥러닝 모델 설계 (Design of a deep learning model to determine fire occurrence in distribution switchboard using thermal imaging data)

  • 박동준;김민영
    • 문화기술의 융합
    • /
    • 제9권5호
    • /
    • pp.737-745
    • /
    • 2023
  • 본 논문은 열화상 이미지를 활용하여 배전반 화재 발생을 감지하기 위한 인공지능 모델을 개발하는 연구에 대해 다룬다. 연구의 목표는 수집한 열화상 이미지를 전처리하여 객체 탐지 모델에 적합한 데이터로 가공하고, 이를 이용하여 배전반 내 화재 발생 여부를 판단하는 모델을 설계하는 것이다. 연구에서는 AI-HUB의 산업단지 내 학습용 열화상 이미지 데이터를 활용하였으며, CNN 기반 딥러닝 객체 검출 알고리즘 중 대표적인 모델인 Faster R-CNN과 RetinaNet을 사용하여 모델을 구축하고 두 개의 모델을 비교 분석하여 최적의 모델을 제안하고 있다.

좌표 해시 인코더를 활용한 토지피복 분류 모델 (Land Cover Classifier Using Coordinate Hash Encoder)

  • 윤용선;권동재
    • 대한원격탐사학회지
    • /
    • 제39권6_3호
    • /
    • pp.1771-1777
    • /
    • 2023
  • 최근 딥러닝의 발전으로 의미론적 분할을 통한 토지피복 분류 방법들이 제안되고 있다. 그러나 기존의 딥러닝 기반 모델들은 영상 정보만을 이용하기 때문에 시공간적 일관성을 담보할 수 없는 한계점이 있다. 이에 본 연구에서는 좌표 정보를 활용한 토지피복 분류 모델을 제안한다. 먼저 암시적 신경 표현 기법인 다중해상도 해시 인코더를 위경도 좌표계로 확장한 좌표 해시 인코더를 통해 좌표의 특징을 추출하였다. 다음으로 추출된 좌표 특징을 다양한 단계의 U-net 디코더와 결합하는 아키텍처를 제안하였다. 실험 결과, 제안 방법이 약 32% 향상된 분류 정확도를 보였고, 시공간적 일관성이 향상됨을 확인하였다.

Self-Attention 딥러닝 모델 기반 산업 제품의 이상 영역 분할 성능 분석 (Performance Analysis of Anomaly Area Segmentation in Industrial Products Based on Self-Attention Deep Learning Model)

  • 박창준;김남중;박준휘;이재현;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.45-46
    • /
    • 2024
  • 본 논문에서는 Self-Attention 기반 딥러닝 기법인 Dense Prediction Transformer(DPT) 모델을 MVTec Anomaly Detection(MVTec AD) 데이터셋에 적용하여 실제 산업 제품 이미지 내 이상 부분을 분할하는 연구를 진행하였다. DPT 모델의 적용을 통해 기존 Convolutional Neural Network(CNN) 기반 이상 탐지기법의 한계점인 지역적 Feature 추출 및 고정된 수용영역으로 인한 문제를 개선하였으며, 실제 산업 제품 데이터에서의 이상 분할 시 기존 주력 기법인 U-Net의 구조를 적용한 최고 성능의 모델보다 1.14%만큼의 성능 향상을 보임에 따라 Self-Attention 기반 딥러닝 기법의 적용이 산업 제품 이상 분할에 효과적임을 입증하였다.

  • PDF

HVAC 시스템의 이상 탐지를 위한 Transformer 기반 딥러닝 기법 (Transformer Based Deep Learning Techniques for HVAC System Anomaly Detection)

  • 박창준;박준휘;김남중;이재현;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.47-48
    • /
    • 2024
  • Heating, Ventilating, and Air Conditioning(HVAC) 시스템은 난방(Heating), 환기(Ventilating), 공기조화(Air Conditioning)를 제공하는 공조시스템으로, 실내 환경의 온도, 습도 조절 및 지속적인 순환 및 여과를 통해 실내 공기 질을 개선한다. 이러한 HVAC 시스템에 이상이 생기는 경우 공기 여과율이 낮아지며, COVID-19와 같은 법정 감염병 예방에 취약해진다. 또한 장비의 과부하를 유발하여, 시스템의 효율성 저하 및 에너지 낭비를 불러올 수 있다. 따라서 본 논문에서는 HVAC 시스템의 이상 탐지 및 조기 조치를 위한 Transformer 기반 이상 탐지 기법의 적용을 제안한다. Transformer는 기존 시계열 데이터 처리를 위한 기법인 Recurrent Neural Network(RNN)기반 모델의 구조적 한계점을 극복함에 따라 Long Term Dependency 문제를 해결하고, 병렬처리를 통해 효율적인 Feature 추출이 가능하다. Transformer 모델이 HVAC 시스템의 이상 탐지에서 RNN 기반의 비교군 모델보다 약 1.31%의 향상을 보이며, Transformer 모델을 통한 HVAC의 이상 탐지에 효율적임을 확인하였다.

  • PDF

Adversarial Attacks and Defense Strategy in Deep Learning

  • Sarala D.V;Thippeswamy Gangappa
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.127-132
    • /
    • 2024
  • With the rapid evolution of the Internet, the application of artificial intelligence fields is more and more extensive, and the era of AI has come. At the same time, adversarial attacks in the AI field are also frequent. Therefore, the research into adversarial attack security is extremely urgent. An increasing number of researchers are working in this field. We provide a comprehensive review of the theories and methods that enable researchers to enter the field of adversarial attack. This article is according to the "Why? → What? → How?" research line for elaboration. Firstly, we explain the significance of adversarial attack. Then, we introduce the concepts, types, and hazards of adversarial attack. Finally, we review the typical attack algorithms and defense techniques in each application area. Facing the increasingly complex neural network model, this paper focuses on the fields of image, text, and malicious code and focuses on the adversarial attack classifications and methods of these three data types, so that researchers can quickly find their own type of study. At the end of this review, we also raised some discussions and open issues and compared them with other similar reviews.

다양성 및 안정성 확보를 위한 스타일 전이 네트워크 손실 함수 정규화 기법 (A Normalized Loss Function of Style Transfer Network for More Diverse and More Stable Transfer Results)

  • 최인성;김용구
    • 방송공학회논문지
    • /
    • 제25권6호
    • /
    • pp.980-993
    • /
    • 2020
  • 딥-러닝 기반 스타일 전이 기법은 영상의 고차원적 구조적 특성을 적절하게 반영하여 높은 품질의 스타일 전이 결과를 제공함으로써 최근 크게 주목받고 있다. 본 논문은 이러한 딥-러닝 기반 스타일 전이 방식의 안정적이고 보다 다양한 스타일 전이 결과 제공에 대한 문제를 다룬다. 스타일 전이를 위한 광범위한 초-매개변수 설정에 따른 실험 결과에 대한 고찰을 바탕으로 스타일 전이 결과의 안정성 및 다양성에 대한 문제를 정의하고, 이러한 문제를 해결하기 위한 부분 손실 정규화 방법을 제안한다. 제안된 정규화 방식을 이용한 스타일 전이는 입력 영상의 특징에 상관없이 초-매개변수 설정을 통해 동일 수준의 스타일 전이 정도를 조절할 수 있을 뿐 아니라, 스타일 손실을 정의하는 계층 별 가중치 설정의 조절을 통해 기존 방식과 달리 보다 다양한 스타일 전이 결과를 제공하며, 입력 영상의 해상도 차이에 대해 보다 안정적인 스타일 전이 결과를 제공하는 특징을 가진다.

딥러닝 기반의 객체 탐지 모델을 활용한 과수 생육 단계 판별 시스템 (A System for Determining the Growth Stage of Fruit Tree Using a Deep Learning-Based Object Detection Model)

  • 방지현;박준;박성욱;김준영;정세훈;심춘보
    • 스마트미디어저널
    • /
    • 제11권4호
    • /
    • pp.9-18
    • /
    • 2022
  • 인공지능 기술의 발전으로 다양한 분야에서 AI가 접목된 시스템에 대한 관심이 급증하고 있다. 농업에서도 정보통신 기술을 적용한 스마트팜이 활용되고 있으며, 자율주행, 인공위성, 빅데이터 등의 다양한 첨단 기술을 접목하여 데이터 기반의 정밀 농업이 상용화되고 있다. 국내의 경우 시설농업 분야 스마트농업의 상용화 사례가 증가하고 있으나 시설원예 분야에 투자 편증이 심하여, 시설농업과 노지 농업의 투자 격차가 지속해서 벌어지고 있다. 특히, 과수, 식물공장 분야는 투자 규모가 작다. 또한, 빅데이터 수집, 활용 체계가 미흡하다는 문제점이 있다. 이에 본 논문에서는 농업의 빅데이터를 활용하는 방안으로 딥러닝 기반의 객체 탐지 모델을 활용한 과수 생육 단계 판별 시스템을 제안한다. 해당 시스템은 농업 현장에서 사용할 수 있도록 하이브리드 앱을 설계 및 구현하며 과수 생육단계 판별을 위한 객체 탐지 기능을 제공한다.

Real2Animation:애니메이션 제작지원을 위한 딥페이크 기술 활용 연구 (Real2Animation: A Study on the application of deepfake technology to support animation production)

  • 신동주;최봉준
    • 융합신호처리학회논문지
    • /
    • 제23권3호
    • /
    • pp.173-178
    • /
    • 2022
  • 최근 인공지능, 빅데이터, IoT 등의 다양한 컴퓨팅 기술이 발달하고 있다. 특히 콘텐츠 및 의료 산업 등 여러 분야에서 인공지능 기반의 딥페이크(Deepfake) 기술이 다양하게 활용되고 있다. 딥페이크 기술이란 딥러닝과 fake의 합성어로, AI의 핵심기술인 딥러닝을 통해 사람의 얼굴이나 신체를 합성하여 억양, 목소리 등을 따라 하게 만드는 기술이다. 본 논문은 딥페이크 기술을 활용하여 애니메이션 모델과 실제 인물사진의 합성을 통한 가상 캐릭터생성을 연구한다. 이를 통해 애니메이션 제작과정에서 일어나는 여러 가지 비용 손실을 최소화하고 작가들의 작업을 지원할 수 있다. 또한, 딥페이크 오픈소스가 인터넷에 퍼짐에 따라 많은 문제들이 나타나면서 딥페이크 기술을 악용한 범죄가 성행하고 있다. 본 연구를 통해서 딥페이크 기술을 성인물이 아닌 아동물에 적용하여 이 기술에 대한 새로운 관점을 제시한다.

Real-Time CCTV Based Garbage Detection for Modern Societies using Deep Convolutional Neural Network with Person-Identification

  • Syed Muhammad Raza;Syed Ghazi Hassan;Syed Ali Hassan;Soo Young Shin
    • Journal of information and communication convergence engineering
    • /
    • 제22권2호
    • /
    • pp.109-120
    • /
    • 2024
  • Trash or garbage is one of the most dangerous health and environmental problems that affect pollution. Pollution affects nature, human life, and wildlife. In this paper, we propose modern solutions for cleaning the environment of trash pollution by enforcing strict action against people who dump trash inappropriately on streets, outside the home, and in unnecessary places. Artificial Intelligence (AI), especially Deep Learning (DL), has been used to automate and solve issues in the world. We availed this as an excellent opportunity to develop a system that identifies trash using a deep convolutional neural network (CNN). This paper proposes a real-time garbage identification system based on a deep CNN architecture with eight distinct classes for the training dataset. After identifying the garbage, the CCTV camera captures a video of the individual placing the trash in the incorrect location and sends an alert notice to the relevant authority.