• Title/Summary/Keyword: Deep Features

Search Result 1,096, Processing Time 0.032 seconds

Deep Learning-based Korean Dialect Machine Translation Research Considering Linguistics Features and Service (언어적 특성과 서비스를 고려한 딥러닝 기반 한국어 방언 기계번역 연구)

  • Lim, Sangbeom;Park, Chanjun;Yang, Yeongwook
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.21-29
    • /
    • 2022
  • Based on the importance of dialect research, preservation, and communication, this paper conducted a study on machine translation of Korean dialects for dialect users who may be marginalized. For the dialect data used, AIHUB dialect data distributed based on the highest administrative district was used. We propose a many-to-one dialect machine translation that promotes the efficiency of model distribution and modeling research to improve the performance of the dialect machine translation by applying Copy mechanism. This paper evaluates the performance of the one-to-one model and the many-to-one model as a BLEU score, and analyzes the performance of the many-to-one model in the Korean dialect from a linguistic perspective. The performance improvement of the one-to-one machine translation by applying the methodology proposed in this paper and the significant high performance of the many-to-one machine translation were derived.

Development of a driver's emotion detection model using auto-encoder on driving behavior and psychological data

  • Eun-Seo, Jung;Seo-Hee, Kim;Yun-Jung, Hong;In-Beom, Yang;Jiyoung, Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.35-43
    • /
    • 2023
  • Emotion recognition while driving is an essential task to prevent accidents. Furthermore, in the era of autonomous driving, automobiles are the subject of mobility, requiring more emotional communication with drivers, and the emotion recognition market is gradually spreading. Accordingly, in this research plan, the driver's emotions are classified into seven categories using psychological and behavioral data, which are relatively easy to collect. The latent vectors extracted through the auto-encoder model were also used as features in this classification model, confirming that this affected performance improvement. Furthermore, it also confirmed that the performance was improved when using the framework presented in this paper compared to when the existing EEG data were included. Finally, 81% of the driver's emotion classification accuracy and 80% of F1-Score were achieved only through psychological, personal information, and behavioral data.

Prediction of Material's Formation Energy Using Crystal Graph Convolutional Neural Network (결정그래프 합성곱 인공신경망을 통한 소재의 생성 에너지 예측)

  • Lee, Hyun-Gi;Seo, Dong-Hwa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.134-142
    • /
    • 2022
  • As industry and technology go through advancement, it is hard to search new materials which satisfy various standards through conventional trial-and-error based research methods. Crystal Graph Convolutional Neural Network(CGCNN) is a neural network which uses material's features as train data, and predicts the material properties(formation energy, bandgap, etc.) much faster than first-principles calculation. This report introduces how to train the CGCNN model which predicts the formation energy using open database. It is anticipated that with a simple programming skill, readers could construct a model using their data and purpose. Developing machine learning model for materials science is going to help researchers who should explore large chemical and structural space to discover materials efficiently.

Sasang Constitution Classification using Convolutional Neural Network on Facial Images (콘볼루션 신경망 기반의 안면영상을 이용한 사상체질 분류)

  • Ahn, Ilkoo;Kim, Sang-Hyuk;Jeong, Kyoungsik;Kim, Hoseok;Lee, Siwoo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.34 no.3
    • /
    • pp.31-40
    • /
    • 2022
  • Objectives Sasang constitutional medicine is a traditional Korean medicine that classifies humans into four constitutions in consideration of individual differences in physical, psychological, and physiological characteristics. In this paper, we proposed a method to classify Taeeum person (TE) and Non-Taeeum person (NTE), Soeum person (SE) and Non-Soeum person (NSE), and Soyang person (ST) and Non-Soyang person (NSY) using a convolutional neural network with only facial images. Methods Based on the convolutional neural network VGG16 architecture, transfer learning is carried out on the facial images of 3738 subjects to classify TE and NTE, SE and NSE, and SY and NSY. Data augmentation techniques are used to increase classification performance. Results The classification performance of TE and NTE, SE and NSE, and SY and NSY was 77.24%, 85.17%, and 80.18% by F1 score and 80.02%, 85.96%, and 72.76% by Precision-Recall AUC (Area Under the receiver operating characteristic Curve) respectively. Conclusions It was found that Soeum person had the most heterogeneous facial features as it had the best classification performance compared to the rest of the constitution, followed by Taeeum person and Soyang person. The experimental results showed that there is a possibility to classify constitutions only with facial images. The performance is expected to increase with additional data such as BMI or personality questionnaire.

Classification Method based on Graph Neural Network Model for Diagnosing IoT Device Fault (사물인터넷 기기 고장 진단을 위한 그래프 신경망 모델 기반 분류 방법)

  • Kim, Jin-Young;Seon, Joonho;Yoon, Sung-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.9-14
    • /
    • 2022
  • In the IoT(internet of things) where various devices can be connected, failure of essential devices may lead to a lot of economic and life losses. For reducing the losses, fault diagnosis techniques have been considered an essential part of IoT. In this paper, the method based on a graph neural network is proposed for determining fault and classifying types by extracting features from vibration data of systems. For training of the deep learning model, fault dataset are used as input data obtained from the CWRU(case western reserve university). To validate the classification performance of the proposed model, a conventional CNN(convolutional neural networks)-based fault classification model is compared with the proposed model. From the simulation results, it was confirmed that the classification performance of the proposed model outweighed the conventional model by up to 5% in the unevenly distributed data. The classification runtime can be improved by lightweight the proposed model in future works.

Digital Technology and Fashion Features in the Contents of Korean Virtual Idol Groups (한국 가상 아이돌 그룹의 콘텐츠에 나타난 디지털 기술 및 패션의 특징)

  • JIAYI XUE;Seunghee Suh
    • Journal of Fashion Business
    • /
    • v.27 no.1
    • /
    • pp.110-125
    • /
    • 2023
  • Virtual idol groups are a product of changes in cultural content and development of digital technology. The purpose of this study is to derive the characteristics of technical expression and fashion of virtual idol groups of Korean entertainment companies, and the significance of this study is to provide basic data for creating a new content business model for virtual idol groups. The research method of this study consisted of literature research and case analysis. Korean virtual idol groups 'K/DA', 'Aespa', and 'Eternity', which show the evolved business model of the entertainment industry through rapid advances in digital technology, were selected as the subject of case analysis for this study, and newspaper articles were searched by keywords and analyzed. As a result of the study, the technical expressions shown in Korean virtual idol groups were 'implementation of realistic content through interaction technology', 'delicate motion expression through motion capture technology', and 'convergence of information between the real world and virtual world through AR technology', 'provision of experience similar to reality by VR technology' and 'formation of cultural contents by Deep Real technology' were deriven. In addition, the characteristics of the Korean virtual guide idol group's fashion are 'marketing strategy through collaboration with fashion items', 'giving recognition as a digital fashion icon of real existence', 'creating a sensuous image as a fashion brand ambassador' and 'fashion style expression of the Z generation's sensibility'.

An Experimental Study on AutoEncoder to Detect Botnet Traffic Using NetFlow-Timewindow Scheme: Revisited (넷플로우-타임윈도우 기반 봇넷 검출을 위한 오토엔코더 실험적 재고찰)

  • Koohong Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.4
    • /
    • pp.687-697
    • /
    • 2023
  • Botnets, whose attack patterns are becoming more sophisticated and diverse, are recognized as one of the most serious cybersecurity threats today. This paper revisits the experimental results of botnet detection using autoencoder, a semi-supervised deep learning model, for UGR and CTU-13 data sets. To prepare the input vectors of autoencoder, we create data points by grouping the NetFlow records into sliding windows based on source IP address and aggregating them to form features. In particular, we discover a simple power-law; that is the number of data points that have some flow-degree is proportional to the number of NetFlow records aggregated in them. Moreover, we show that our power-law fits the real data very well resulting in correlation coefficients of 97% or higher. We also show that this power-law has an impact on the learning of autoencoder and, as a result, influences the performance of botnet detection. Furthermore, we evaluate the performance of autoencoder using the area under the Receiver Operating Characteristic (ROC) curve.

Customized AI Exercise Recommendation Service for the Balanced Physical Activity (균형적인 신체활동을 위한 맞춤형 AI 운동 추천 서비스)

  • Chang-Min Kim;Woo-Beom Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.234-240
    • /
    • 2022
  • This paper proposes a customized AI exercise recommendation service for balancing the relative amount of exercise according to the working environment by each occupation. WISDM database is collected by using acceleration and gyro sensors, and is a dataset that classifies physical activities into 18 categories. Our system recommends a adaptive exercise using the analyzed activity type after classifying 18 physical activities into 3 physical activities types such as whole body, upper body and lower body. 1 Dimensional convolutional neural network is used for classifying a physical activity in this paper. Proposed model is composed of a convolution blocks in which 1D convolution layers with a various sized kernel are connected in parallel. Convolution blocks can extract a detailed local features of input pattern effectively that can be extracted from deep neural network models, as applying multi 1D convolution layers to input pattern. To evaluate performance of the proposed neural network model, as a result of comparing the previous recurrent neural network, our method showed a remarkable 98.4% accuracy.

Extended Knowledge Graph using Relation Modeling between Heterogeneous Data for Personalized Recommender Systems (이종 데이터 간 관계 모델링을 통한 개인화 추천 시스템의 지식 그래프 확장 기법)

  • SeungJoo Lee;Seokho Ahn;Euijong Lee;Young-Duk Seo
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.27-40
    • /
    • 2023
  • Many researchers have investigated ways to enhance recommender systems by integrating heterogeneous data to address the data sparsity problem. However, only a few studies have successfully integrated heterogeneous data using knowledge graph. Additionally, most of the knowledge graphs built in these studies only incorporate explicit relationships between entities and lack additional information. Therefore, we propose a method for expanding knowledge graphs by using deep learning to model latent relationships between heterogeneous data from multiple knowledge bases. Our extended knowledge graph enhances the quality of entity features and ultimately increases the accuracy of predicted user preferences. Experiments using real music data demonstrate that the expanded knowledge graph leads to an increase in recommendation accuracy when compared to the original knowledge graph.

Horizon Run Spin-off Simulations for Studying the Formation and Expansion history of Early Universe

  • Kim, Yonghwi;Park, Jaehong;Park, Changbom;Kim, Juhan;Singh, Ankit;Lee, Jaehyun;Shin, Jihye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2021
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on aGpc scale while achieving a resolution of 1kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. On the back of a remarkable achievement of this, we have finished to run follow-up simulations which have 2 times larger volume than before and are expected to complementary to some limitations of previous HR simulations both for the study on the large scale features and the expansion history in a distant Universe. For these simulations, we consider the sub-grid physics of radiative heating/cooling, reionization, star formation, SN/AGN feedbacks, chemical evolution and the growth of super-massive blackholes. In order to do this project, we implemented a hybrid MPI-OpenMP version of the RAMSES code, 'RAMSES-OMP', which is specifically designed for modern many-core many thread parallel systems. These simulation successfully reproduce various observation result and provide a large amount of statistical samples of Lyman-alpha emitters and protoclusters which are important to understand the formation and expansion history of early universe. These are invaluable assets for the interpretation of current ΛCDM cosmology and current/upcoming deep surveys of the Universe, such as the world largest narrow band imaging survey, ODIN (One-hundred-square-degree Dark energy camera Imaging in Narrow band).

  • PDF