• Title/Summary/Keyword: Deep Features

Search Result 1,096, Processing Time 0.028 seconds

Automatic recognition of the old and the infirm using Arduino technology implementation (아두이노를 사용하여 노약자 자동 인식 기술 구현)

  • Choi, Chul-kil;Lee, Sung-jin;Choi, Byeong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.454-457
    • /
    • 2014
  • Arduino is for design based on open source prototyping platform, artist, designer, hobby activists, etc, i has been designed for all those who are interested in the environment construct. Arduino adventage you can easily create applications hardware, without deep knowledge about the hardware. Configuration of arduino using AVR microcontroller ATmage 168, software to action arduino using arduino program, MATLAB, Processing. Arduino is open source base, you can hardware production directly and using shield additionally, the arduino can be combined. Android is open source. Continue to expand through a combination of hardware, Arduino. It name is shield. Be given to the Arduino Uno board to the main board, the shield extends to the various aspects and help can be equipped with more features. The shield on top of the shield can be combined as a kind of shield and Ethernet shield, motor shield, the shield RFID hardware beyond a simple extension can be configured. In this paper, RFID technology Sealed for automatic recognition of the elderly by the elderly to identify and tag them SM130 13.56Mhz compatible hardware was constructed by combining tags.

  • PDF

LeafNet: Plants Segmentation using CNN (LeafNet: 합성곱 신경망을 이용한 식물체 분할)

  • Jo, Jeong Won;Lee, Min Hye;Lee, Hong Ro;Chung, Yong Suk;Baek, Jeong Ho;Kim, Kyung Hwan;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • Plant phenomics is a technique for observing and analyzing morphological features in order to select plant varieties of excellent traits. The conventional methods is difficult to apply to the phenomics system. because the color threshold value must be manually changed according to the detection target. In this paper, we propose the convolution neural network (CNN) structure that can automatically segment plants from the background for the phenomics system. The LeafNet consists of nine convolution layers and a sigmoid activation function for determining the presence of plants. As a result of the learning using the LeafNet, we obtained a precision of 98.0% and a recall rate of 90.3% for the plant seedlings images. This confirms the applicability of the phenomics system.

Implementation of Speech Recognition and Flight Controller Based on Deep Learning for Control to Primary Control Surface of Aircraft

  • Hur, Hwa-La;Kim, Tae-Sun;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.57-64
    • /
    • 2021
  • In this paper, we propose a device that can control the primary control surface of an aircraft by recognizing speech commands. The speech command consists of 19 commands, and a learning model is constructed based on a total of 2,500 datasets. The training model is composed of a CNN model using the Sequential library of the TensorFlow-based Keras model, and the speech file used for training uses the MFCC algorithm to extract features. The learning model consists of two convolution layers for feature recognition and Fully Connected Layer for classification consists of two dense layers. The accuracy of the validation dataset was 98.4%, and the performance evaluation of the test dataset showed an accuracy of 97.6%. In addition, it was confirmed that the operation was performed normally by designing and implementing a Raspberry Pi-based control device. In the future, it can be used as a virtual training environment in the field of voice recognition automatic flight and aviation maintenance.

Design of Arrhythmia Classification System Based on 1-D Convolutional Neural Networks (1차원 합성곱 신경망에 기반한 부정맥 분류 시스템의 설계)

  • Kim, Seong-Woo;Kim, In-Ju;Shin, Seung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • Recently, many researches have been actively to diagnose symptoms of heart disease using ECG signal, which is an electrical signal measuring heart status. In particular, the electrocardiogram signal can be used to monitor and diagnose arrhythmias that indicates an abnormal heart status. In this paper, we proposed 1-D convolutional neural network for arrhythmias classification systems. The proposed model consists of deep 11 layers which can learn to extract features and classify 5 types of arrhythmias. The simulation results over MIT-BIH arrhythmia database show that the learned neural network has more than 99% classification accuracy. It is analyzed that the more the number of convolutional kernels the network has, the more detailed characteristics of ECG signal resulted in better performance. Moreover, we implemented a practical application based on the proposed one to classify arrythmias in real-time.

DCNN Optimization Using Multi-Resolution Image Fusion

  • Alshehri, Abdullah A.;Lutz, Adam;Ezekiel, Soundararajan;Pearlstein, Larry;Conlen, John
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4290-4309
    • /
    • 2020
  • In recent years, advancements in machine learning capabilities have allowed it to see widespread adoption for tasks such as object detection, image classification, and anomaly detection. However, despite their promise, a limitation lies in the fact that a network's performance quality is based on the data which it receives. A well-trained network will still have poor performance if the subsequent data supplied to it contains artifacts, out of focus regions, or other visual distortions. Under normal circumstances, images of the same scene captured from differing points of focus, angles, or modalities must be separately analysed by the network, despite possibly containing overlapping information such as in the case of images of the same scene captured from different angles, or irrelevant information such as images captured from infrared sensors which can capture thermal information well but not topographical details. This factor can potentially add significantly to the computational time and resources required to utilize the network without providing any additional benefit. In this study, we plan to explore using image fusion techniques to assemble multiple images of the same scene into a single image that retains the most salient key features of the individual source images while discarding overlapping or irrelevant data that does not provide any benefit to the network. Utilizing this image fusion step before inputting a dataset into the network, the number of images would be significantly reduced with the potential to improve the classification performance accuracy by enhancing images while discarding irrelevant and overlapping regions.

CAB: Classifying Arrhythmias based on Imbalanced Sensor Data

  • Wang, Yilin;Sun, Le;Subramani, Sudha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2304-2320
    • /
    • 2021
  • Intelligently detecting anomalies in health sensor data streams (e.g., Electrocardiogram, ECG) can improve the development of E-health industry. The physiological signals of patients are collected through sensors. Timely diagnosis and treatment save medical resources, promote physical health, and reduce complications. However, it is difficult to automatically classify the ECG data, as the features of ECGs are difficult to extract. And the volume of labeled ECG data is limited, which affects the classification performance. In this paper, we propose a Generative Adversarial Network (GAN)-based deep learning framework (called CAB) for heart arrhythmia classification. CAB focuses on improving the detection accuracy based on a small number of labeled samples. It is trained based on the class-imbalance ECG data. Augmenting ECG data by a GAN model eliminates the impact of data scarcity. After data augmentation, CAB classifies the ECG data by using a Bidirectional Long Short Term Memory Recurrent Neural Network (Bi-LSTM). Experiment results show a better performance of CAB compared with state-of-the-art methods. The overall classification accuracy of CAB is 99.71%. The F1-scores of classifying Normal beats (N), Supraventricular ectopic beats (S), Ventricular ectopic beats (V), Fusion beats (F) and Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively. Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively.

Change Attention based Dense Siamese Network for Remote Sensing Change Detection (원격 탐사 변화 탐지를 위한 변화 주목 기반의 덴스 샴 네트워크)

  • Hwang, Gisu;Lee, Woo-Ju;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.14-25
    • /
    • 2021
  • Change detection, which finds changes in remote sensing images of the same location captured at different times, is very important because it is used in various applications. However, registration errors, building displacement errors, and shadow errors cause false positives. To solve these problems, we propose a novle deep convolutional network called CADNet (Change Attention Dense Siamese Network). CADNet uses FPN (Feature Pyramid Network) to detect multi-scale changes, applies a Change Attention Module that attends to the changes, and uses DenseNet as a feature extractor to use feature maps that contain both low-level and high-level features for change detection. CADNet performance measured from the Precision, Recall, F1 side is 98.44%, 98.47%, 98.46% for WHU datasets and 90.72%, 91.89%, 91.30% for LEVIR-CD datasets. The results of this experiment show that CADNet can offer better performance than any other traditional change detection method.

Channel Attention Module in Convolutional Neural Network and Its Application to SAR Target Recognition Under Limited Angular Diversity Condition (합성곱 신경망의 Channel Attention 모듈 및 제한적인 각도 다양성 조건에서의 SAR 표적영상 식별로의 적용)

  • Park, Ji-Hoon;Seo, Seung-Mo;Yoo, Ji Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.175-186
    • /
    • 2021
  • In the field of automatic target recognition(ATR) with synthetic aperture radar(SAR) imagery, it is usually impractical to obtain SAR target images covering a full range of aspect views. When the database consists of SAR target images with limited angular diversity, it can lead to performance degradation of the SAR-ATR system. To address this problem, this paper proposes a deep learning-based method where channel attention modules(CAMs) are inserted to a convolutional neural network(CNN). Motivated by the idea of the squeeze-and-excitation(SE) network, the CAM is considered to help improve recognition performance by selectively emphasizing discriminative features and suppressing ones with less information. After testing various CAM types included in the ResNet18-type base network, the SE CAM and its modified forms are applied to SAR target recognition using MSTAR dataset with different reduction ratios in order to validate recognition performance improvement under the limited angular diversity condition.

Adaptive Weight Control for Improvement of Catastropic Forgetting in LwF (LwF에서 망각현상 개선을 위한 적응적 가중치 제어 방법)

  • Park, Seong-Hyeon;Kang, Seok-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • Among the learning methods for Continuous Learning environments, "Learning without Forgetting" has fixed regularization strengths, which can lead to poor performance in environments where various data are received. We suggest a way to set weights variable by identifying the features of the data we want to learn. We applied weights adaptively using correlation and complexity. Scenarios with various data are used for evaluation and experiments showed accuracy increases by up to 5% in the new task and up to 11% in the previous task. In addition, it was found that the adaptive weight value obtained by the algorithm proposed in this paper, approached the optimal weight value calculated manually by repeated experiments for each experimental scenario. The correlation coefficient value is 0.739, and overall average task accuracy increased. It can be seen that the method of this paper sets an appropriate lambda value every time a new task is learned, and derives the optimal result value in various scenarios.

Accuracy of Phishing Websites Detection Algorithms by Using Three Ranking Techniques

  • Mohammed, Badiea Abdulkarem;Al-Mekhlafi, Zeyad Ghaleb
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.272-282
    • /
    • 2022
  • Between 2014 and 2019, the US lost more than 2.1 billion USD to phishing attacks, according to the FBI's Internet Crime Complaint Center, and COVID-19 scam complaints totaled more than 1,200. Phishing attacks reflect these awful effects. Phishing websites (PWs) detection appear in the literature. Previous methods included maintaining a centralized blacklist that is manually updated, but newly created pseudonyms cannot be detected. Several recent studies utilized supervised machine learning (SML) algorithms and schemes to manipulate the PWs detection problem. URL extraction-based algorithms and schemes. These studies demonstrate that some classification algorithms are more effective on different data sets. However, for the phishing site detection problem, no widely known classifier has been developed. This study is aimed at identifying the features and schemes of SML that work best in the face of PWs across all publicly available phishing data sets. The Scikit Learn library has eight widely used classification algorithms configured for assessment on the public phishing datasets. Eight was tested. Later, classification algorithms were used to measure accuracy on three different datasets for statistically significant differences, along with the Welch t-test. Assemblies and neural networks outclass classical algorithms in this study. On three publicly accessible phishing datasets, eight traditional SML algorithms were evaluated, and the results were calculated in terms of classification accuracy and classifier ranking as shown in tables 4 and 8. Eventually, on severely unbalanced datasets, classifiers that obtained higher than 99.0 percent classification accuracy. Finally, the results show that this could also be adapted and outperforms conventional techniques with good precision.