• Title/Summary/Keyword: Deep Features

Search Result 1,096, Processing Time 0.027 seconds

Depth Map Estimation Model Using 3D Feature Volume (3차원 특징볼륨을 이용한 깊이영상 생성 모델)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.447-454
    • /
    • 2018
  • This paper proposes a depth image generation algorithm of stereo images using a deep learning model composed of a CNN (convolutional neural network). The proposed algorithm consists of a feature extraction unit which extracts the main features of each parallax image and a depth learning unit which learns the parallax information using extracted features. First, the feature extraction unit extracts a feature map for each parallax image through the Xception module and the ASPP(Atrous spatial pyramid pooling) module, which are composed of 2D CNN layers. Then, the feature map for each parallax is accumulated in 3D form according to the time difference and the depth image is estimated after passing through the depth learning unit for learning the depth estimation weight through 3D CNN. The proposed algorithm estimates the depth of object region more accurately than other algorithms.

A DDoS Attack Detection Technique through CNN Model in Software Define Network (소프트웨어-정의 네트워크에서 CNN 모델을 이용한 DDoS 공격 탐지 기술)

  • Ko, Kwang-Man
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.605-610
    • /
    • 2020
  • Software Defined Networking (SDN) is setting the standard for the management of networks due to its scalability, flexibility and functionality to program the network. The Distributed Denial of Service (DDoS) attack is most widely used to attack the SDN controller to bring down the network. Different methodologies have been utilized to detect DDoS attack previously. In this paper, first the dataset is obtained by Kaggle with 84 features, and then according to the rank, the 20 highest rank features are selected using Permutation Importance Algorithm. Then, the datasets are trained and tested with Convolution Neural Network (CNN) classifier model by utilizing deep learning techniques. Our proposed solution has achieved the best results, which will allow the critical systems which need more security to adopt and take full advantage of the SDN paradigm without compromising their security.

A Study on Various Attention for Improving Performance in Single Image Super Resolution (초고해상도 복원에서 성능 향상을 위한 다양한 Attention 연구)

  • Mun, Hwanbok;Yoon, Sang Min
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.898-910
    • /
    • 2020
  • Single image-based super-resolution has been studied for a long time in computer vision because of various applications. Various deep learning-based super-resolution algorithms are introduced recently to improve the performance by reducing side effects like blurring and staircase effects. Most deep learning-based approaches have focused on how to implement the network architecture, loss function, and training strategy to improve performance. Meanwhile, Several approaches using Attention Module, which emphasizes the extracted features, are introduced to enhance the performance of the network without any additional layer. Attention module emphasizes or scales the feature map for the purpose of the network from various perspectives. In this paper, we propose the various channel attention and spatial attention in single image-based super-resolution and analyze the results and performance according to the architecture of the attention module. Also, we explore that designing multi-attention module to emphasize features efficiently from various perspectives.

Using similarity based image caption to aid visual question answering (유사도 기반 이미지 캡션을 이용한 시각질의응답 연구)

  • Kang, Joonseo;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.191-204
    • /
    • 2021
  • Visual Question Answering (VQA) and image captioning are tasks that require understanding of the features of images and linguistic features of text. Therefore, co-attention may be the key to both tasks, which can connect image and text. In this paper, we propose a model to achieve high performance for VQA by image caption generated using a pretrained standard transformer model based on MSCOCO dataset. Captions unrelated to the question can rather interfere with answering, so some captions similar to the question were selected to use based on a similarity to the question. In addition, stopwords in the caption could not affect or interfere with answering, so the experiment was conducted after removing stopwords. Experiments were conducted on VQA-v2 data to compare the proposed model with the deep modular co-attention network (MCAN) model, which showed good performance by using co-attention between images and text. As a result, the proposed model outperformed the MCAN model.

Drug-Drug Interaction Prediction Using Krill Herd Algorithm Based on Deep Learning Method

  • Al-Marghilani, Abdulsamad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.319-328
    • /
    • 2021
  • Parallel administration of numerous drugs increases Drug-Drug Interaction (DDI) because one drug might affect the activity of other drugs. DDI causes negative or positive impacts on therapeutic output. So there is a need to discover DDI to enhance the safety of consuming drugs. Though there are several DDI system exist to predict an interaction but nowadays it becomes impossible to maintain with a large number of biomedical texts which is getting increased rapidly. Mostly the existing DDI system address classification issues, and especially rely on handcrafted features, and some features which are based on particular domain tools. The objective of this paper to predict DDI in a way to avoid adverse effects caused by the consumed drugs, to predict similarities among the drug, Drug pair similarity calculation is performed. The best optimal weight is obtained with the support of KHA. LSTM function with weight obtained from KHA and makes bets prediction of DDI. Our methodology depends on (LSTM-KHA) for the detection of DDI. Similarities among the drugs are measured with the help of drug pair similarity calculation. KHA is used to find the best optimal weight which is used by LSTM to predict DDI. The experimental result was conducted on three kinds of dataset DS1 (CYP), DS2 (NCYP), and DS3 taken from the DrugBank database. To evaluate the performance of proposed work in terms of performance metrics like accuracy, recall, precision, F-measures, AUPR, AUC, and AUROC. Experimental results express that the proposed method outperforms other existing methods for predicting DDI. LSTMKHA produces reasonable performance metrics when compared to the existing DDI prediction model.

Structure, Method, and Improved Performance Evaluation Function of SRCNN and VDSR (SRCNN과 VDSR의 구조와 방법 및 개선된 성능평가 함수)

  • Lee, Kwang-Chan;Wang, Guangxing;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.543-548
    • /
    • 2021
  • The higher the resolution of the image, the higher the satisfaction of the viewers of the image, and the super-resolution imaging has a considerable increase in research value among the fields of computer vision and image processing. In this study, the main features of low-resolution image LR are extracted mainly using deep learning super-resolution models. It learns and reconstructs the extracted features, and focuses on reconstruction-based algorithms that generate high-resolution image HR. In this paper, we investigate SRCNN and VDSR in a super-resolution algorithm model based on reconstruction. The structure and algorithm process of the SRCNN and VDSR model are briefly introduced, and the multi-channel and special form are also examined in the improved performance evaluation function, and understand the performance of each algorithm through experiments. In the experiment, an experiment was performed to compare the results of the SRCNN and VDSR models with the peak signal-to-noise ratio and image structure similarity, so that the results can be easily judged.

Automatic Augmentation Technique of an Autoencoder-based Numerical Training Data (오토인코더 기반 수치형 학습데이터의 자동 증강 기법)

  • Jeong, Ju-Eun;Kim, Han-Joon;Chun, Jong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.75-86
    • /
    • 2022
  • This study aims to solve the problem of class imbalance in numerical data by using a deep learning-based Variational AutoEncoder and to improve the performance of the learning model by augmenting the learning data. We propose 'D-VAE' to artificially increase the number of records for a given table data. The main features of the proposed technique go through discretization and feature selection in the preprocessing process to optimize the data. In the discretization process, K-means are applied and grouped, and then converted into one-hot vectors by one-hot encoding technique. Subsequently, for memory efficiency, sample data are generated with Variational AutoEncoder using only features that help predict with RFECV among feature selection techniques. To verify the performance of the proposed model, we demonstrate its validity by conducting experiments by data augmentation ratio.

Structural health monitoring response reconstruction based on UAGAN under structural condition variations with few-shot learning

  • Jun, Li;Zhengyan, He;Gao, Fan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.687-701
    • /
    • 2022
  • Inevitable response loss under complex operational conditions significantly affects the integrity and quality of measured data, leading the structural health monitoring (SHM) ineffective. To remedy the impact of data loss, a common way is to transfer the recorded response of available measure point to where the data loss occurred by establishing the response mapping from measured data. However, the current research has yet addressed the structural condition changes afterward and response mapping learning from a small sample. So, this paper proposes a novel data driven structural response reconstruction method based on a sophisticated designed generating adversarial network (UAGAN). Advanced deep learning techniques including U-shaped dense blocks, self-attention and a customized loss function are specialized and embedded in UAGAN to improve the universal and representative features extraction and generalized responses mapping establishment. In numerical validation, UAGAN efficiently and accurately captures the distinguished features of structural response from only 40 training samples of the intact structure. Besides, the established response mapping is universal, which effectively reconstructs responses of the structure suffered up to 10% random stiffness reduction or structural damage. In the experimental validation, UAGAN is trained with ambient response and applied to reconstruct response measured under earthquake. The reconstruction losses of response in the time and frequency domains reached 16% and 17%, that is better than the previous research, demonstrating the leading performance of the sophisticated designed network. In addition, the identified modal parameters from reconstructed and the corresponding true responses are highly consistent indicates that the proposed UAGAN is very potential to be applied to practical civil engineering.

Structural health monitoring data anomaly detection by transformer enhanced densely connected neural networks

  • Jun, Li;Wupeng, Chen;Gao, Fan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.613-626
    • /
    • 2022
  • Guaranteeing the quality and integrity of structural health monitoring (SHM) data is very important for an effective assessment of structural condition. However, sensory system may malfunction due to sensor fault or harsh operational environment, resulting in multiple types of data anomaly existing in the measured data. Efficiently and automatically identifying anomalies from the vast amounts of measured data is significant for assessing the structural conditions and early warning for structural failure in SHM. The major challenges of current automated data anomaly detection methods are the imbalance of dataset categories. In terms of the feature of actual anomalous data, this paper proposes a data anomaly detection method based on data-level and deep learning technique for SHM of civil engineering structures. The proposed method consists of a data balancing phase to prepare a comprehensive training dataset based on data-level technique, and an anomaly detection phase based on a sophisticatedly designed network. The advanced densely connected convolutional network (DenseNet) and Transformer encoder are embedded in the specific network to facilitate extraction of both detail and global features of response data, and to establish the mapping between the highest level of abstractive features and data anomaly class. Numerical studies on a steel frame model are conducted to evaluate the performance and noise immunity of using the proposed network for data anomaly detection. The applicability of the proposed method for data anomaly classification is validated with the measured data of a practical supertall structure. The proposed method presents a remarkable performance on data anomaly detection, which reaches a 95.7% overall accuracy with practical engineering structural monitoring data, which demonstrates the effectiveness of data balancing and the robust classification capability of the proposed network.

Deep learning-based Human Action Recognition Technique Considering the Spatio-Temporal Relationship of Joints (관절의 시·공간적 관계를 고려한 딥러닝 기반의 행동인식 기법)

  • Choi, Inkyu;Song, Hyok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.413-415
    • /
    • 2022
  • Since human joints can be used as useful information for analyzing human behavior as a component of the human body, many studies have been conducted on human action recognition using joint information. However, it is a very complex problem to recognize human action that changes every moment using only each independent joint information. Therefore, an additional information extraction method to be used for learning and an algorithm that considers the current state based on the past state are needed. In this paper, we propose a human action recognition technique considering the positional relationship of connected joints and the change of the position of each joint over time. Using the pre-trained joint extraction model, position information of each joint is obtained, and bone information is extracted using the difference vector between the connected joints. In addition, a simplified neural network is constructed according to the two types of inputs, and spatio-temporal features are extracted by adding LSTM. As a result of the experiment using a dataset consisting of 9 behaviors, it was confirmed that when the action recognition accuracy was measured considering the temporal and spatial relationship features of each joint, it showed superior performance compared to the result using only single joint information.

  • PDF