Choi, Eun Mi;Lee, Dong Hyun;Kang, Seok Jin;Shim, Ye Jee;Kim, Heung Sik;Kim, Joon Sik;Jeong, Jong In;Ha, Jung-Sook;Jang, Ja-Hyun
Clinical and Experimental Pediatrics
/
v.61
no.12
/
pp.403-406
/
2018
Floating-Harbor syndrome is a rare autosomal dominant genetic disorder associated with SRCAP mutation. To date, approximately 50 cases of Floating-Harbor syndrome have been reported, but none have been reported in Korea yet. Floating-Harbor syndrome is characterized by delayed bony maturation, unique facial features, and language impairment. Here, we present a 6-year-old boy with a triangular face, deep-set protruding eyes, low-set ears, wide nose with narrow nasal bridge, short philtrum, long thin lips, clinodactyly, and developmental delay that was transferred to our pediatric clinic for genetic evaluation. He showed progressive delay in the area of language and cognition-adaption as he grew. He had previously undergone chromosomal analysis at another hospital due to his language delay, but his karyotype was normal. We performed targeted exome sequencing, considering several syndromes with similar phenotypes. Library preparation was performed with the TruSight One sequencing panel, which enriches the sample for about 4,800 genes of clinical relevance. Massively parallel sequencing was conducted with NextSeq. An identified variant was confirmed by Sanger sequencing of the patient and his parents. Finally, the patient was confirmed as the first Korean case of Floating-Harbor syndrome with a novel SRCAP (Snf2 related CREBBP activator protein) mutation (c.7732dupT, p.Ser2578Phefs*6), resulting in early termination of the protein; it was not found in either of his healthy parents or a control population. To our knowledge, this is the first study to describe a boy with Floating-Harbor syndrome with a novel SRCAP mutation diagnosed by targeted exome sequencing in Korea.
The Hoeamsa Temple of Yangju City was established at least during the late Korea Dynasty. This temple was rebuilt several times with the support of the royal family from the late Korea Dynasty to the early Joseon Dynasty. It was continually rebuilt in association with JiGong monk, HyeKeun monk, and MuHak monk. Hoeamsa temple was leading the Buddhist culture as a Buddhist center of the Joseon Dynasty . It was destroyed in the late Joseon Period. This site has been excavated several times since 1997. Various roofing tiles were unearthed. Of these tiles the edge of eaves are the artifacts showing the best features of this era. In this temple site has been excavated a variety of Sanskrit roof tiles. These tiles were made using superior technique. On the roof tiles are engraved Sanskrit mantras with a variety of 1 to 9 words. The jeongbeopkkye mantra(oṃ raṃ) and six-word mantra(oṃ ma ṇi pa dme hūṃ) were discovered the most. These mantras were believe to expel several evils from the Buddhist temple. It must have been that the six-word mantra culture became prevalent and provided a turning point in the history of Korean Buddhism. We can clearly know when some of the Sanskrit roof tiles were first manufactured. These roof tiles are the absolute standard of the other Sanskrit roof tiles excavated from different Buddhist temples. The master craftsmen must have been very skilled, understood the mantra very well, and had deep faith in the Sanskrit mantra. Hoeamsa Temple is a milestone in studying the Sanskrit roof tiles. More studies on various aspects are expected to be followed.
Journal of the Korean Institute of Traditional Landscape Architecture
/
v.29
no.4
/
pp.40-48
/
2011
Mt. Hee-yang is located in Mungyeong-si, Gyeongsangbuk-do, South Korea. Through the analysis and interpretations of twenty-two different ancient writings which covers Mt. Hee-yang, and three times of field studies, I tried to analyze the cognition of our ancestors in those days regarding Mt. Hee-yang. Since Mt. Hee-yang goes very deep in the mountain range, Mt. Hee-yang was recognized as appropriate place for seclusion or operating Byeolseo. From the era of Silla, in terms of Fengshui, Mt. Hee-yang was also interpreted as an image of either a phoenix flying into the sky(鳳凰登天) or a valley of a phoenix and dragon(鳳巖龍谷). This cognition comes from its formations of topographical features, and continued to the era of Joseon Dynasty. The purposes of excursion were to retrace the course of predecessors, to attain one's long-cherished desire to visit, or to enjoy holidays. From the analysis of Mt. Hee-yang's visitors, the average social status of them is lowered a lot around the end of Joseon Dynasty, compared with the early period of Joseon Dynasty. Studying the visitor's route of Mt. Hee-yang, I could see the places that are highly-recognized were the top of Mt. Hee-yang, Seonyudong(仙遊洞), Bakundae(白雲臺), Yayuam(夜遊岩). Mt. Hee-yang was recognized as Sun-kyung(仙境) where Sin-seon(a taoist hermit with miraculous powers; the sage of old) lives, and mostly it was main destination of visit while Bakundae(白雲臺) was perceived diversely on each visitor because of its strange scenery.
Cho, Seongji;Sodnom-Ish, Buyanbileg;Eo, Mi Young;Lee, Ju Young;Kwon, Ik Jae;Myoung, Hoon;Yoon, Hye Jung;Kim, Soung Min
Journal of the Korean Association of Oral and Maxillofacial Surgeons
/
v.48
no.5
/
pp.249-258
/
2022
The specific muscular structure of the tongue greatly affects margin shrinkage and tumor invasion, making the optimal surgical margin controversial. This study investigated surgical margin correlated prognosis of TSCC (tongue squamous cell carcinoma) according to margin location and its value, and the histopathologic factors which are suggestive of tumor invasion. And we would like to propose defining of the surgical margin for TSCC via prognosis according to location and margin values. We reviewed 45 patients diagnosed with TSCC who visited Seoul National University Dental Hospital (SNUDH) (Seoul, Republic of Korea) from 2010 to 2019, who were managed by a single surgical team. Patient clinical and pathological data of patients were retrospectively reviewed, and in 36 out of 45 patients, the pathologic parameters including the worst pattern of invasion (WPOI) and tumor budding were investigated via diagnostic histopathology slide reading. When standardized with as 0.25 cm anterior margins, as 0.35 cm deep margin, there was no significant difference in disease specific survival (DSS) or loco-regional recurrence-free survival (LRFS). Additionally, there was a non-significant difference in DSS and LRFS at the nearest margin of 0.35 cm (PDSS=0.276, PLRFS=0.162). Aggressive WPOI and high tumor budding showed lower survival and recurrence-free survival, and there were significant differences in close margin and involved margin frequencies. In TSCC, the value and location of the surgical margin did not have a significant relationship with prognosis, but WPOI and tumor budding suggesting the pattern of muscle invasion affected survival and recurrence-free survival. WPOI and tumor budding should be considered when setting an optimal surgical margin.
In this paper, we present the Korean menu-ordering Sentence Text-to-Speech (TTS) system using conformer-based FastSpeech2. Conformer is the convolution-augmented transformer, which was originally proposed in Speech Recognition. Combining two different structures, the Conformer extracts better local and global features. It comprises two half Feed Forward module at the front and the end, sandwiching the Multi-Head Self-Attention module and Convolution module. We introduce the Conformer in Korean TTS, as we know it works well in Korean Speech Recognition. For comparison between transformer-based TTS model and Conformer-based one, we train FastSpeech2 and Conformer-based FastSpeech2. We collected a phoneme-balanced data set and used this for training our models. This corpus comprises not only general conversation, but also menu-ordering conversation consisting mainly of loanwords. This data set is the solution to the current Korean TTS model's degradation in loanwords. As a result of generating a synthesized sound using ParallelWave Gan, the Conformer-based FastSpeech2 achieved superior performance of MOS 4.04. We confirm that the model performance improved when the same structure was changed from transformer to Conformer in the Korean TTS.
With the development of information and communication technology, numerous reviews are continuously posted on websites, which causes information overload problems. Therefore, users face difficulty in exploring reviews for their decision-making. To solve such a problem, many studies on review helpfulness prediction have been actively conducted to provide users with helpful and reliable reviews. Existing studies predict review helpfulness mainly based on the features included in the review. However, such studies disable providing the reason why predicted reviews are helpful. Therefore, this study aims to propose a methodology for applying eXplainable Artificial Intelligence (XAI) techniques in review helpfulness prediction to address such a limitation. This study uses restaurant reviews collected from Yelp.com to compare the prediction performance of six models widely used in previous studies. Next, we propose an explainable review helpfulness prediction model by applying the XAI technique to the model with the best prediction performance. Therefore, the methodology proposed in this study can recommend helpful reviews in the user's purchasing decision-making process and provide the interpretation of why such predicted reviews are helpful.
Recent advancements in data measuring technology have facilitated the installation of various sensors, such as pressure meters and flow meters, to effectively assess the real-time conditions of water distribution systems (WDSs). However, as cities expand extensively, the factors that impact the reliability of measurements have become increasingly diverse. In particular, demand data, one of the most significant hydraulic variable in WDS, is challenging to be measured directly and is prone to missing values, making the development of accurate data generation models more important. Therefore, this paper proposes an adversarially trained autoencoder (ATAE) model based on generative deep learning techniques to accurately estimate demand data in WDSs. The proposed model utilizes two neural networks: a generative network and a discriminative network. The generative network generates demand data using the information provided from the measured pressure data, while the discriminative network evaluates the generated demand outputs and provides feedback to the generator to learn the distinctive features of the data. To validate its performance, the ATAE model is applied to a real distribution system in Austin, Texas, USA. The study analyzes the impact of data uncertainty by calculating the accuracy of ATAE's prediction results for varying levels of uncertainty in the demand and the pressure time series data. Additionally, the model's performance is evaluated by comparing the results for different data collection periods (low, average, and high demand hours) to assess its ability to generate demand data based on water consumption levels.
Journal of the Korean Society for Library and Information Science
/
v.57
no.2
/
pp.435-452
/
2023
This study experimented with automatic classification of subject headings using BERT-based transfer learning model, and analyzed its performance. This study analyzed the classification performance according to the main class of KDC classification and the category type of subject headings. Six datasets were constructed from Korean national bibliographies based on the frequency of the assignments of subject headings, and titles were used as classification features. As a result, classification performance showed values of 0.6059 and 0.5626 on the micro F1 and macro F1 score, respectively, in the dataset (1,539,076 records) containing 3,506 subject headings. In addition, classification performance by the main class of KDC classification showed good performance in the class General works, Natural science, Technology and Language, and low performance in Religion and Arts. As for the performance by the category type of the subject headings, the categories of plant, legal name and product name showed high performance, whereas national treasure/treasure category showed low performance. In a large dataset, the ratio of subject headings that cannot be assigned increases, resulting in a decrease in final performance, and improvement is needed to increase classification performance for low-frequency subject headings.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.273-275
/
2022
The use of drugs by pregnant women poses a potential risk to the fetus. Therefore, it is essential to classify drugs that pregnant women should prohibit. However, the fetal toxicity of most drugs has not been identified. This takes a lot of time and cost. In silico approaches, such as virtual screening, can identify compounds that may present a high risk to the fetus for a wide range of compounds at the low cost and time. We collected class information of each drug from the hazard classification lists for prescribing drugs in pregnancy by the government of Korea and Australia. Using the structural and chemical features of each drug, various machine learning models were constructed to predict fetal toxicity of drugs. For all models, the quantitative performance evaluation was performed. Based on the attention algorithm, important molecular substructures of compounds were identified in the process of predicting the fetal toxicity of the drug by the proposed model. From the results, we confirmed that drugs with a high risk of fetal toxicity can be predicted for a wide range of compounds by machine learning. This study can be used as a pre-screening tool for fetal toxicity predictions, as it provides key molecular substructures associated with the fetal toxicity of compounds.
We report an unusual case of postoperative early gastric cancer with liver metastasis mimicking pancreaticobiliary carcinoma. A 73-year-old man with early gastric cancer was transferred for endoscopic treatment. The patient underwent endoscopic submucosal dissection for the treatment of the early gastric cancer. The pathological diagnosis was adenocarcinoma with extension to the deep submucosa and some lymphatic invasion. Therefore, subsequent a subtotal gastrectomy was performed. The histological results demonstrated residual adenocarcinoma confined to the mucosa. The resection margin and lymph node metastasis were negative. Thus, he was closely monitored for recurrence every 6 months. After 2 years, he was suddenly suspected of developing liver metastasis and local recurrence. He received a liver biopsy, and the pathological result was poorly differentiated adenocarcinoma. Immunohistochemical staining suggested pancreaticobiliary carcinoma rather than metastatic adenocarcinoma from the stomach or colon, but primary focus was not found. We were sure that the recurrent stomach cancer metastasized to the liver because stomach cancer can show heterogeneous cytokeratin (CK) expression pattern with various histological features. Therefore, no single CK expression pattern has diagnostic value for distinguishing gastric carcinoma. The patient underwent chemotherapy for metastatic stomach cancer.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.