• Title/Summary/Keyword: Deep Excavations

Search Result 55, Processing Time 0.024 seconds

Lateral Wall Movements and Apparent Earth Pressures for In-situ Walls during Deep Excavations in Multi-Layered Grounds with Rocks (암반을 포함한 다층토 지반에서의 깊은 굴착시 흙막이벽체의 수평변위 및 겉보기토압)

  • 유충식;김연정
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.43-50
    • /
    • 2000
  • This paper presents the measured performance of in-situ walls using the measured data collected from various deep excavation sites in urban area. A variety of in-situ wall systems from 57 sites were considered, including H-pile walls, soil cement walls, cast-in-place pile walls, and diaphram walls. The examination included lateral wall movements as well as apparent earth pressure distributions. The measured data were thoroughly analyzed to investigate the effects of various components of in-situ wall system, such as types of wall and supporting system, on the lateral wall movement as well as on the apparent earth pressure distribution. The results wee then compared with the current design/analysis methods, and information is presented in chart formes to provide tools that can be used for design and analysis. Using the measured data, a semi-empirical equation for predicting deep excavation induced maximum lateral wall movement is suggested.

  • PDF

Lateral Earth Pressures Acting on Anchored Retention Walls for Underground Excavation (지하굴착시 앵커지지 흙막이벽에 작용하는 측방토압)

  • 홍원표;윤중만
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.63-78
    • /
    • 1995
  • Recently, in order to utilize more effectively underground space, deep excavations have been performed on building or subway construction in urban areas. In such excavations, anchors have been used to support the excavation retaining walls because the anchored excavation could provide wide working space for underground construction. The purpose of this paper is to establish empirical equations to be able to estimate the earth pressures acting on anchored excavation retention walls, based on the investigation of field measuring results, which were obtained from twenty seven building construction sites. The prestressed anchor force was measured by load cells which were attached to the anchor head, while the horizontal displacement of excavation walls were measured by inclinometers which were installed right'behind the retention walls. The lateral earth pressures acting on the anchored retention walls, which were estimated from both the measured anchor forces and the horizontal displacement of the walls, showed a trapezoidal distribution. There was some difference between the measured earth pressures acting on the anchored retention walls and the empirical earth pressures given by several empirical equations. Thus, the lateral earth pressures acting on anchored retention walls would be estimated by these empirical equations with some modifications.

  • PDF

Safety Evaluation of Subway Tunnel Structures According to Adjacent Excavation (인접굴착공사에 따른 지하철 터널 구조물 안전성 평가)

  • Jung-Youl Choi;Dae-Hui Ahn;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.559-563
    • /
    • 2024
  • Currently, in Korea, large-scale, deep excavations are being carried out adjacent to structures due to overcrowding in urban areas. for adjacent excavations in urban areas, it is very important to ensure the safety of earth retaining structures and underground structures. accordingly, an automated measurement system is being introduced to manage the safety of subway tunnel structures. however, the utilization of automated measurement system results is very low. existing evaluation techniques rely only on the maximum value of measured data, which can overestimate abnormal behavior. accordingly, in this study, a vast amount of automated measurement data was analyzed using the Gaussian probability density function, a technique that can quantitatively evaluate. highly reliable results were derived by applying probabilistic statistical analysis methods to a vast amount of data. therefore, in this study, the safety evaluation of subway tunnel structures due to adjacent excavation work was performed using a technique that can process a large amount of data.

Geotechnical parameters from pressuremeter tests for MRT Blue Line extension in Bangkok

  • Likitlersuang, Suched;Surarak, Chanaton;Wanatowski, Dariusz;Oh, Erwin;Balasubramaniam, Arumugam
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.99-118
    • /
    • 2013
  • Construction of the extension project of the Bangkok MRT Blue Line underground railway was recently started in 2011. The construction of approximately 5 km long underground tunnel and 4 deep excavations of underground station are considered to be the most important geotechnical works. The pressuremeter was selected as a high-quality in situ testing of the soil to evaluate design parameters for the project. In addition, other field and laboratory tests such as vane shear and $CK_0U$ triaxial tests were included in the investigation programme. This paper aims to present the ground conditions encountered along the MRT Blue Line extension project as well as the site investigation and interpretation techniques with particular focus on the pressuremeter tests. The results are also compared with the pressuremeter investigation from the previous Bangkok MRT project.

Comparison of Displacement of the Braced Retaining Wall by Developed Elasto-Plastic Analysis (개선된 탄소성 해석을 이용한 버팀지지 흙막이벽의 거동비교)

  • Shin, Jin-Whan;Kim, Dong-Shin
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.112-118
    • /
    • 2004
  • Recently, when being constructed the large structures, the deep excavations have performed to utilize the underground space. As the ground excavation is deeper, the damage of the adjacent structure and the ground is frequently occurred. the Analysis of the retaining structures is necessary to safety of the excavation works. There are many methods such as elasto-plastic theory, FEM, and FDM to analyze the displacement of the retaining structure. In this thesis, GEBA-1 program by the Nakamura-Nakajawa elasto-plastic method was developed. The lateral displacement of the wall was analyzed by the developed program GEBA-1, SUNEX, and EXCAD, and compared with the measured displacement bye the Inclinometer. The monitored fields were three excavation work site in S-I, S-II, and S-III area. Excavation method of each site is braced retaining wall using H-pile. Excavation depth is 14m, 14m, and 8.2m.

Complex analysis of rock cutting with consideration of rock-tool interaction using distinct element method (DEM)

  • Zhang, Guangzhe;Dang, Wengang;Herbst, Martin;Song, Zhengyang
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.421-432
    • /
    • 2020
  • Cutting of rocks is very common encountered in tunneling and mining during underground excavations. A deep understanding of rock-tool interaction can promote industrial applications significantly. In this paper, a distinct element method based approach, PFC3D, is adopted to simulate the rock cutting under different operation conditions (cutting velocity, depth of cut and rake angle) and with various tool geometries (tip angle, tip wear and tip shape). Simulation results showed that the cutting force and accumulated number of cracks increase with increasing cutting velocity, cut depth, tip angle and pick abrasion. The number of cracks and cutting force decrease with increasing negative rake angle and increase with increasing positive rake angle. The numerical approach can offer a better insight into the rock-tool interaction during the rock cutting process. The proposed numerical method can be used to assess the rock cuttability, to estimate the cutting performance, and to design the cutter head.

A Study for Safety Management on the Basis of Lateral Displacement Rates of Anchored In-situ Walls by Collapse Case Histories (붕괴 사례를 통한 앵커지지 가설흙막이벽체의 수평변위속도에 의한 안전관리 연구)

  • Chung, Dae-Seouk;Lee, Yong-Beom
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.367-378
    • /
    • 2018
  • Purpose: The objective of this study is to present a reasonable safety management of the anchored in-situ wall systems constructed in the ground conditions consisting of multi-layered soils underlain by bedrocks in the urban area of Korea. Method: Field measurements collected from collapse case histories with deep excavations were analyzed for the safety management of the wall systems supported by the earth anchors in terms of lateral displacement rates. Results: The average maximum lateral displacement rate in a collapsed zone of the in-situ wall significantly increased upon the completion of the excavation. Particularly, the collapse of the in-situ wall system due to the sliding occurring along the discontinuities of the rock produced a considerably large lateral displacement rate over a relatively short period. Conclusion: For predicting and preventing the collapse of the wall system during or after the excavation work, the utilization of the safety management criteria of the in-situ wall system by the lateral displacement rate was found to be much more reasonable in judging the safety of earthworks than the application of the quantitative management criteria which have been commonly used in the excavation sites.

Stiffness Degradation during Deep Excavation in Urban Area (도심지 깊은 굴착에 따른 지반 강성의 변화)

  • Choi, Jongho;Koo, Bonwhee;Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.27-31
    • /
    • 2015
  • In urban area, many design projects related to geotechnical projects are controlled by serviceability rather than stability requirements. Accordingly, control of ground deformation has become more crucial and many researchers have studied soil stiffness. Recent experimental studies on the stress-strain response of Chicago glacial clays showed that the nonlinearity and anisotropy are the two key factors in evaluating the soil stiffness. In this study, experimental results are applied to analyze the deep excavation site locating in downtown Chicago. The stress paths observed from the observation points located behind and front of the supporting wall yield typical stress paths. Changes in soil stiffness nonlinearity and anisotropy were discussed by comparing experimental and computed stress paths. The stiffness anisotropy were significant even at the first few excavations. The stiffness degradation characteristics are significantly different according to relative location to the support wall even at the same elevation.

An Experimental Investigation for the Effects of Pre-loading on the Ground Movement in Sand (선행하중 적용시 흙막이 벽체 및 주변지반의 거동에 관한 굴착모형실험)

  • 이봉열;김학문
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.15-26
    • /
    • 2003
  • Urban excavation requires highly reliable prediction technique for the design and construction of earth retaining structure in order to protect adjacent structures around deep excavation. Application of the pre-loading of bracing for deep excavation has been reported, and the known beneficial effects are not fully understood and recognized by many practitioners. Model tests have been carried out to evaluate the efficiency of pre-loading system in reducing ground settlement as well as prediction of structural damage around excavation in sand. The test results revealed that the applied pre-loading of 50% and 70% showed about 20% of reduction in horizontal wall displacement and 30∼40% reduction in ground settlement. Also, bracing forces and earth pressure distribution behind the wall have been monitored during pre-loading at various excavation stages.

Two dimensional finite element modeling of Tabriz metro underground station L2-S17 in the marly layers

  • Mansouri, Hadiseh;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.315-327
    • /
    • 2019
  • Deep excavations for development of subway systems in metropolitan regions surrounded by adjacent buildings is an important geotechnical problem, especialy in Tabriz city, where is mostly composed of young alluvial soils and weak marly layers. This study analyzes the wall displacement and ground surface settlement due to deep excavation in the Tabriz marls using two dimensional finite element method. The excavation of the station L2-S17 was selected as a case study for the modelling. The excavation is supported by the concrete diaphragm wall and one row of steel struts. The analyses investigate the effects of wall stiffness and excavation width on the excavation-induced deformations. The geotechnical parameters were selected based on the results of field and laboratory tests. The results indicate that the wall deflection and ground surface settlement increase with increasing excavation depth and width. The change in maximum wall deflection and ground settlement with considerable increase in wall stiffness is marginal, however the lower wall stiffness produces the larger wall and ground displacements. The maximum wall deflections induced by the excavation with a width of 8.2 m are 102.3, 69.4 and 44.3 mm, respectively for flexible, medium and stiff walls. The ratio of maximum ground settlement to maximum lateral wall deflection approaches to 1 with increasing wall stiffness. It was found that the wall stiffness affects the settlement influence zone. An increase in the wall stiffness results in a decrease in the settlements, an extension in the settlement influence zones and occurrence of the maximum settlements at a larger distance from the wall. The maximum of settlement for the excavation with a width of 14.7 m occurred at 6.1, 9.1 and 24.2 m away from the wall, respectively, for flexible, medium and stiff walls.