• 제목/요약/키워드: Deep Convolution Neural Network

검색결과 263건 처리시간 0.024초

정규화 및 교차검증 횟수 감소를 위한 무작위 풀링 연산 선택에 관한 연구 (A Study on Random Selection of Pooling Operations for Regularization and Reduction of Cross Validation)

  • 류서현
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.161-166
    • /
    • 2018
  • 본 논문에서는 컨볼루션 신경망 구조(Convolution Neural Network)에서 정규화 및 교차검증 횟수 감소를 위한 무작위로 풀링 연산을 선택하는 방법에 대해 설명한다. 컨볼루션 신경망 구조에서 풀링 연산은 피쳐맵(Feature Map) 크기 감소 및 이동 불변(Shift Invariant)을 위해 사용된다. 기존의 풀링 방법은 각 풀링 계층에서 하나의 풀링 연산이 적용된다. 이러한 방법은 학습 간 신경망 구조의 변화가 없기 때문에, 학습 자료에 과도하게 맞추는 과 적합(Overfitting) 문제를 가지고 있다. 또한 최적의 풀링 연산 조합을 찾기 위해서는, 각 풀링 연산 조합에 대해 교차검증을 하여 최고의 성능을 내는 조합을 찾아야 한다. 이러한 문제를 해결하기 위해, 풀링 계층에 확률적인 개념을 도입한 무작위 풀링 연산 선택 방법을 제안한다. 제안한 방법은 풀링 계층에 하나의 풀링 연산을 적용하지 않는다. 학습기간 동안 각 풀링 영역에서 여러 풀링 연산 중 하나를 무작위로 선택한다. 그리고 시험 시에는 각 풀링 영역에서 사용된 풀링 연산의 평균을 적용한다. 이러한 방법은 풀링 영역에서 서로 다른 풀링 조합을 사용한 구조의 평균을 한 것으로 볼 수 있다. 따라서, 컨볼루션 신경망 구조가 학습데이터에 과도하게 맞추어지는 과적합 문제를 피할 수 있으며, 또한 각 풀링 계층에서 특정 풀링 연산을 선택할 필요가 없기 때문에 교차 검증 횟수를 감소시킬 수 있다. 실험을 통해, 제안한 방법은 정규화 성능을 향상시킬 뿐만 아니라 및 교차 검증 횟수를 줄일 수 있다는 것을 검증하였다.

A Comparison of Deep Reinforcement Learning and Deep learning for Complex Image Analysis

  • Khajuria, Rishi;Quyoom, Abdul;Sarwar, Abid
    • Journal of Multimedia Information System
    • /
    • 제7권1호
    • /
    • pp.1-10
    • /
    • 2020
  • The image analysis is an important and predominant task for classifying the different parts of the image. The analysis of complex image analysis like histopathological define a crucial factor in oncology due to its ability to help pathologists for interpretation of images and therefore various feature extraction techniques have been evolved from time to time for such analysis. Although deep reinforcement learning is a new and emerging technique but very less effort has been made to compare the deep learning and deep reinforcement learning for image analysis. The paper highlights how both techniques differ in feature extraction from complex images and discusses the potential pros and cons. The use of Convolution Neural Network (CNN) in image segmentation, detection and diagnosis of tumour, feature extraction is important but there are several challenges that need to be overcome before Deep Learning can be applied to digital pathology. The one being is the availability of sufficient training examples for medical image datasets, feature extraction from whole area of the image, ground truth localized annotations, adversarial effects of input representations and extremely large size of the digital pathological slides (in gigabytes).Even though formulating Histopathological Image Analysis (HIA) as Multi Instance Learning (MIL) problem is a remarkable step where histopathological image is divided into high resolution patches to make predictions for the patch and then combining them for overall slide predictions but it suffers from loss of contextual and spatial information. In such cases the deep reinforcement learning techniques can be used to learn feature from the limited data without losing contextual and spatial information.

합성곱 신경망을 이용한 온실 파프리카의 작물 생체중 추정 (Estimation of Sweet Pepper Crop Fresh Weight with Convolutional Neural Network)

  • 문태원;박준영;손정익
    • 생물환경조절학회지
    • /
    • 제29권4호
    • /
    • pp.381-387
    • /
    • 2020
  • 작물의 생체중을 추정하기 위해 다양한 연구가 시도되었지만, 이미지를 활용하여 생체중을 추정한 예는 없었다. 최근 합성곱 신경망을 사용한 이미지 처리 연구가 늘고 있으며, 합성곱 신경망은 미가공 데이터를 그대로 사용할 수 있다. 본 연구에서는 합성곱 신경망을 이용하여 미가공 데이터 상태인 특정 시점의 파프리카 이미지를 입력으로 작물의 생체중을 추정하도록 학습하였다. 실험은 파프리카(Capsicum annuum L.)를 재배하는 온실에서 수행하였다. 합성곱 신경망의 출력값인 생체중은 파괴조사를 통해 수집한 데이터를 기반으로 회귀 분석하였다. 학습된 합성곱 신경망의 결정 계수(R2)의 최고값은 0.95로 나타났다. 생체중 추정값은 실제 측정값과 매우 유사한 경향성을 보여주었다.

Opcode 빈도수 기반 악성코드 이미지를 활용한 CNN 기반 악성코드 탐지 기법 (CNN-Based Malware Detection Using Opcode Frequency-Based Image)

  • 고석민;양재혁;최원준;김태근
    • 정보보호학회논문지
    • /
    • 제32권5호
    • /
    • pp.933-943
    • /
    • 2022
  • 인터넷이 발달하고 컴퓨터 이용률이 높아짐에 따라 악성코드로 인한 위협 또한 함께 증가하고 있다. 매년 발견되는 악성코드의 수는 급격히 증가하여 자동으로 대량의 악성코드를 분석하기 위한 시스템이 필요한 상황이다. 본 논문에서는 딥러닝 알고리즘을 활용한 악성코드 자동 분석 기법을 소개한다. CNN(Convolutional Neural Network)라는 이미지 분류에 활용도가 높은 알고리즘을 이용하여 악성코드의 특징을 이미지화한 데이터를 분석한다. 제안하는 방법은 악성코드의 Semantic한 정보를 탐지에 활용하기 위하여 단순 바이너리 바이트를 기반으로 생성한 이미지가 아닌, 바이너리의 명령어 빈도수를 기반으로 생성한 이미지를 CNN으로 분석한다. 악성코드 10,000개 정상코드 10,000개로 구성된 대량의 데이터 셋을 활용하여 탐지 성능을 확인한 결과, 제안하는 방법은 91%의 정확도로 악성코드를 탐지할 수 있음이 확인되었다.

Stack-Attention을 이용한 흐릿한 영상 강화 기법 (Blurred Image Enhancement Techniques Using Stack-Attention)

  • 박채림;이광일;조석제
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권2호
    • /
    • pp.83-90
    • /
    • 2023
  • 컴퓨터 비전에서 흐릿한 영상은 영상 인식률을 저하시키는 중요한 요인이다. 이것은 주로 카메라가 불안정하게 초점을 맞추지 못하거나, 노출시간동안 장면의 물체가 빠르게 움직일 때 발생한다. 흐릿한 영상은 시각적 품질을 크게 저하시켜 가시성을 약화시키며, 이러한 현상은 디지털카메라의 기술이 지속적으로 발전하고 있음에도 불구하고 빈번하게 일어난다. 본 논문에서는 합성곱 신경망으로 설계된 심층 멀티 패치 계층 네트워크(Deep multi patch hierarchical network)를 기반으로 수정된 빌딩 모듈을 대체하여 입력 영상의 디테일을 잡고 주의 집중 기법을 도입하여 흐릿한 영상 속 물체에 대한 초점을 다방면으로 맞추어 영상을 강화한다. 이것은 서로 다른 스케일에서 각각의 가중치를 측정 및 부여하여 흐림의 변화를 차별적으로 처리하고 영상의 거친 수준에서 미세한 수준까지 순차적으로 복원하여 글로벌한 영역과 로컬 영역 모두 조정한다. 이러한 과정을 통해 저하된 화질을 복구하고 효율적인 객체 인식 및 특징을 추출하며 색 항상성을 보완하는 우수한 결과를 보여준다.

Shanghai Containerised Freight Index Forecasting Based on Deep Learning Methods: Evidence from Chinese Futures Markets

  • Liang Chen;Jiankun Li;Rongyu Pei;Zhenqing Su;Ziyang Liu
    • East Asian Economic Review
    • /
    • 제28권3호
    • /
    • pp.359-388
    • /
    • 2024
  • With the escalation of global trade, the Chinese commodity futures market has ascended to a pivotal role within the international shipping landscape. The Shanghai Containerized Freight Index (SCFI), a leading indicator of the shipping industry's health, is particularly sensitive to the vicissitudes of the Chinese commodity futures sector. Nevertheless, a significant research gap exists regarding the application of Chinese commodity futures prices as predictive tools for the SCFI. To address this gap, the present study employs a comprehensive dataset spanning daily observations from March 24, 2017, to May 27, 2022, encompassing a total of 29,308 data points. We have crafted an innovative deep learning model that synergistically combines Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) architectures. The outcomes show that the CNN-LSTM model does a great job of finding the nonlinear dynamics in the SCFI dataset and accurately capturing its long-term temporal dependencies. The model can handle changes in random sample selection, data frequency, and structural shifts within the dataset. It achieved an impressive R2 of 96.6% and did better than the LSTM and CNN models that were used alone. This research underscores the predictive prowess of the Chinese futures market in influencing the Shipping Cost Index, deepening our understanding of the intricate relationship between the shipping industry and the financial sphere. Furthermore, it broadens the scope of machine learning applications in maritime transportation management, paving the way for SCFI forecasting research. The study's findings offer potent decision-support tools and risk management solutions for logistics enterprises, shipping corporations, and governmental entities.

금속 표면의 결함 검출을 위한 영역 기반 CNN 기법 비교 (Comparison of Region-based CNN Methods for Defects Detection on Metal Surface)

  • 이민기;서기성
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.865-870
    • /
    • 2018
  • A machine vision based industrial inspection includes defects detection and classification. Fast inspection is a fundamental problem for many applications of real-time vision systems. It requires little computation time and localizing defects robustly with high accuracy. Deep learning technique have been known not to be suitable for real-time applications. Recently a couple of fast region-based CNN algorithms for object detection are introduced, such as Faster R-CNN, and YOLOv2. We apply these methods for an industrial inspection problem. Three CNN based detection algorithms, VOV based CNN, Faster R-CNN, and YOLOv2, are experimented for defect detection on metal surface. The results for inspection time and various performance indices are compared and analysed.

ResNet 모델을 이용한 눈 주변 영역의 특징 추출 및 개인 인증 (Feature Extraction on a Periocular Region and Person Authentication Using a ResNet Model)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제22권12호
    • /
    • pp.1347-1355
    • /
    • 2019
  • Deep learning approach based on convolution neural network (CNN) has extensively studied in the field of computer vision. However, periocular feature extraction using CNN was not well studied because it is practically impossible to collect large volume of biometric data. This study uses the ResNet model which was trained with the ImageNet dataset. To overcome the problem of insufficient training data, we focused on the training of multi-layer perception (MLP) having simple structure rather than training the CNN having complex structure. It first extracts features using the pretrained ResNet model and reduces the feature dimension by principle component analysis (PCA), then trains a MLP classifier. Experimental results with the public periocular dataset UBIPr show that the proposed method is effective in person authentication using periocular region. Especially it has the advantage which can be directly applied for other biometric traits.

딥러닝 기반 집-나무-사람 검사 분석 모델의 개발 (Development of Deep Learning-Based House-Tree-Person Test Analysis Model)

  • 조승제;조건우;김영욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.558-561
    • /
    • 2021
  • 심리학에서 사람의 심리 상태를 알아보기 위해 사용되는 검사 방법 중, 집-나무-사람 검사(HTP Test)는 피실험자가 그린 집, 나무, 사람을 포함하는 그림을 사용하여 피실험자의 심리를 분석하는 투영 검사법이다. 본 논문에서는 딥러닝 모델을 이용해 HTP Test 에 사용되는 그림을 분석하는 시스템을 제안하며, 성능 평가를 통해 심리학에서의 딥러닝 모델 적용 가능성을 확인한다. 또한 그림 데이터 분석에 적합한 사전 훈련 모델을 개발하기 위해, ImageNet 과 스케치 데이터셋으로 사전 훈련하여 성능을 비교한다. 본 논문에서 제안하는 시스템은 크게 감정 분석을 위한 이미지 객체 추출부, 추출된 객체로 피실험자의 감정을 분류하는 감정 분류부로 구성되어 있다. 객체 추출과 이미지 분류 모두 CNN(Convolution Neural Network) 기반의 딥러닝 모델을 사용하며, 이미지 분류 모델은 서로 다른 데이터셋으로 모델을 사전 훈련한 후, 훈련 데이터셋으로 전이 학습하여 모델의 성능을 비교한다. 그림 심리 분석을 위한 HTP test 스케치 데이터셋은, HTP Test 와 동일하게 피실험자가 3 개 클래스의 집, 나무, 사람의 그림을 그려 자체 수집하였다.

딥러닝을 활용한 감성 증명사진 제작 웹 애플리케이션 (Web Application for Creating Emotional ID Photos using Deep Learning)

  • 김도영;강인영;김연수;박구만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.1261-1264
    • /
    • 2022
  • 최근 본인에게 어울리는 색상을 배경으로 촬영하는 감성 증명사진이 유행하고 있다. 개인마다 퍼스널 컬러를 찾아 배경색에 적용하는 것은 시간, 비용, 인력적으로 어려움이 있으므로 자동으로 개인에 따른 배경색을 찾아서 사진을 합성하여 감성 증명사진을 제작해 주는 딥러닝 기반 시스템을 구축하였다. 본 논문에서는 Convolution Neural Network 를 기반으로 한 딥러닝 기술을 이용해 Image Matting 과 Multi-Label Classification 을 수행하여 기존 감성 증명사진들을 학습하여 모델을 구축하였으며, 해당 시스템으로 사용자에게 새로운 배경색이 적용된 감성 증명사진을 제공하는 웹 애플리케이션을 제안한다.

  • PDF