• Title/Summary/Keyword: Deep Blue LED

Search Result 17, Processing Time 0.026 seconds

Development & Reliability Verification of Ultra-high Color Rendering White Artificial Sunlight LED Device using Deep Blue LED Light Source and Phosphor (Deep Blue LED 광원과 형광체를 이용한 초고연색 백색 인공태양광 LED 소자의 개발)

  • Jong-Uk An;Tae-Kyu Kwon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.59-68
    • /
    • 2023
  • Currently, yellow phosphor of Y3Al5O12:Ce3+ (YAG:Ce) fluorescent material is applied to a 450~480nm blue LED light source to implement a white LED device and it has a simple structure, can obtain sufficient luminance, and is economical. However, in this method, in terms of spectrum analysis, it is difficult to mass-produce white LEDs having the same color coordinates due to color separation cause by the wide wavelength gap between blue and yellow band. There is a disadvantage that it is difficult to control optical properties such as color stability and color rendering. In addition, this method does not emit purple light in the range of 380 to 420nm, so it is white without purple color that can not implement the spectrum of the entire visible light spectrum as like sunlight. Because of this, it is difficult to implement a color rendering index(CRI) of 90 or higher, and natural light characteristics such as sunlight can not be expected. For this, need for a method of implementing sunlight with one LED by using a method of combining phosphors with one light source, rather than a method of combining red, blue, and yellow LEDs. Using this method, the characteristics of an artificial sunlight LED device with a spectrum similar to that of sunlight were demonstrated by implementing LED devices of various color temperatures with high color rendering by injecting phosphors into a 405nm deep blue LED light source. In order to find the spectrum closest to sunlight, different combinations of phosphors were repeatedly fabricated and tested. In addition, reliability and mass productivity were verified through temperature and humidity tests and ink penetration tests.

Alumina masking for deep trench of InGaN/GaN blue LED in ICP dry etching process

  • 백하봉;권용희;이인구;이은철;김근주
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.59-62
    • /
    • 2005
  • 백색 LED 램프를 제조하는 공정에서 램프간의 전기적 개방상태의 절연상태를 유지하기 위해 사파이어 기판 위에 성장된 GaN 계 반도체 에피박막층을 제거하기 위해 유도 결합형 플라즈마 식각 공정을 이용하였다. 4 미크론의 두께를 갖는 GaN 층을 식각하는데 있어 식각 방지 마스킹 물질로 포토레지스트, $SiO_2,\;Si_{3}N_4$$Al_{2}O_3$를 시험하였다. 동일한 전력 및 가스유량상태에서 $Al_{2}O_3$만 에피층을 보호할 수 있음을 확인하였다.

  • PDF

Optimization and Fabrication of Color Temperature Tunable White LED Luminaires (색온도 가변 LED 조명 최적화 설계 및 제작)

  • Kang, Da-Il;Kim, Kun-Yul;Yu, Young-Moon;Choi, Hee-Lack
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.2
    • /
    • pp.102-107
    • /
    • 2014
  • In this paper the spectra of correlated color temperature (CCT) tunable white light-emitting diode (LED) luminaires, consisting of commercial red, green, blue, and amber LED chips, were optimized to increase color rendering index (CRI), and a special CRI of R9 for deep red color was obtained. To improve the design's accuracy, measured LED spectra were used instead of mathematically modeled ones. Real CCT tunable LED luminaires with CRIs of 87-90 and R9s of 34-93 were fabricated and demonstrated at CCTs of 3000-6000 K.

Impact of Sintering Gas Pressure on Deep-red EuSi2O2N2 Phosphors

  • Deressa, Gemechu;Kim, Jongsu;Kim, Gwangchul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.22-25
    • /
    • 2020
  • Deep red EuSi2O2N2 phosphors were synthesized under various sintering gas pressures (1 atm, 2 atm, and 3 atm). They were in good agreement with the standard EuSi2O2N2 ICSD card # 41-6046 (a monoclinic crystal system with space group of P21/a). Their photoluminescence intensities were significantly increased with increasing the gas pressures. They showed a broad band emission peaking at 680 nm due to 4f65d1 - 4f7 of Eu2+ ion, which can be efficiently excited in the visible range up to 550 nm. The best one at 3 atm was applied for red LED based on blue chip, which showed the strong deep red emission.

A Study on the Characteristic Analysis of Blue OLED for the Luminous Traffic Safety Mark (발광형 교통안전표지용 청색 OLED의 특성분석에 관한 연구)

  • Kang, Myung-Goo;Kim, Jung-Yeoun;Oh, Hwan-Sool
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.138-145
    • /
    • 2007
  • Luminous traffic safety mark is restricted to use only the place that has a thick fog, many night traffic accidents, limited field of view due to structure of road. Recently, LEDs are used for luminous traffic safety mark, but we propose an organic LED for a novel luminous traffic safety mark in the near future. The device structure was $ITO/2-TNATA(500{\AA})/{\alpha}-NPD(200{\AA})/DPVBi(300{\AA})/BCP(10{\AA})/Alq_3(200{\AA})/LiF(10{\AA})/Al:Li(1000{\AA})$. The characteristics of the device are most efficient on occasion of using $N_2$ gas plasma treatment. Current density is $240.71mA/cm^2$ luminance $10,550cd/m^2$, and current efficiency 3.53cd/A at an applied voltage of 10V. The maximum EL wavelength of the fabricated blue organic light-emitting device is 456nm. CIE color coordinates are x=0.1449 and y=0.1633, which is similar to NTSC deep-blue color with CIE color coordinates of x=0.14 and y=0.08.

  • PDF

Growth and Tuber Yield of Sweet Potato Slips Grown under Different Light-Emitting Diodes (LED 광질에 따른 고구마의 묘소질 및 괴근 수량성)

  • Lee, Na Ra;Lee, Seung Yeob
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.356-363
    • /
    • 2014
  • This work was conducted to investigate the field growth and yield of the sweetpotato (Ipomoea batatas) slips grown under different light emitting diodes (LEDs). Sweet potato cuttings of 3 cultivars ('Matnami', 'Shinhwangmi', and 'Yeonhwangmi') were cultivated under fluorescent lamp (FL) and several LEDs (PPF $150{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at 20cm distance) in deep flow culture system for 20 days. The plants were acclimatized under sunlight for 10 days, and then cuttings (30cm length) were planted with $75{\times}25cm$ planting density on June 10th, covered with black vinyl film during growth period. Length and diameter of vine, number of root were excellent in the red plus blue (7:3) LED than the other treatments. At 30 days after planting, the survival rate in red plus blue (7:3) LED was significantly higher than that in FL and red LED, and it was not different among cultivars. Vine length, vine diameter, and number of node were not significant among LED light qualities and cultivars. After 120 days in the field cultivation, vine length, vine diameter, number of node, number of branch, and fresh weight of shoot were not significant among LED light qualities, but those except the number of branch showed significant differences among cultivars. Yield characteristics among LED light colors were not significant, but weight of storage root per plant, mean weight of storage root, and yield showed significant differences among cultivars. The yield per 10a in 'Matnami', and 'Yeonhwangmi' was significantly higher than that in 'Shinhwangmi'.

Effect of Light-Quality Control on Growth of Ledebouriella seseloides Grown in Plant Factory of an Artificial Light Type (인공광 식물공장내 광질 제어가 방풍나물 생장에 미치는 영향)

  • Heo, Jeong-Wook;Kim, Dong-Eok;Han, Kil-Su;Kim, Sook-Jong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.193-200
    • /
    • 2013
  • BACKGROUND: Plant factory system of an artificial light type using Light-Emitting Diodes (LEDs), fluorescent light, or metal halide lamp instead of sun light is an ultimated method for plant production without any pesticides regardless of seasonal changes. The plant factory is also completely isolated from outside environmental conditions such as a light, temperature, or humidity compared to conventional greenhouse. Light-environment control such as a quality or quantity in the plant factory system is essential for improving the growth and development of plant species. However, there was little report that the effects of various light qualities provided by LEDs on Ledebouriella seseloides growth under the plant factory system. METHODS AND RESULTS: Ledebouriella seseloides seedlings transplanted at urethane sponge were grown in the plant factory system of a horizontal type with LED artificial lights for 90 days. Yamazaki solution for hydroponic culture of the seedlings was regularly irrigated by the deep flow technique (DFT) system on the culture gutters. Electrical Conductivity (EC) and pH of the solution was recorded at 1.4 ds/m and 5.8 in average, respectively during the experimental period. Number of unfolded leaves, leaf length, shoot fresh and dry weight of the seedlings were three times measured in every 30 days after beginning of the experiment. Blue LEDs, red LEDs, and fluorescent lights inside the plant factory were used as light sources. Conventional fluorescent lamps were considered as a control. In all the treatment, light intensity was maintained at $100{\mu}mol/m^2/s$ on the culture bed. Fresh weight of the seedlings was 3.7 times greater in the treatment with the mixture radiation of fluorescent light and blue+red LEDs (1:3 in energy ratio; Treatment FLBR13) than in fluorescent light treatment (Treatment FL). In FLBR13 treatment, dry weight per seedling was two times greater than in FL or BR11 treatment of blue+red LEDs (1:3 in energy ratio; Treatment BR11) during the culture period. Increasing in number of unfolded leaves was also significantly affected by the FLBR13 treatment comparing with BR11 treatment. CONCLUSION(S): Hydroponic culture of Ledebouriella seseloides seedlings was successfully achieved in the plant factory system with mixture lights of blue, red LEDs and fluorescent lights. Shoot growth of the seedlings was significantly promoted by the FLBR13 with the mixture radiation of fluorescent light, blue, and red LEDs under 1:3 mixture ratio of blue and red LEDs during the experimental period compared to conventional light conditions.

Ultraviolet LEDs using n-ZnO:Ga/i-ZnO/p-GaN:Mg heterojunction (n-ZnO/i-ZnO/p-GaN:Mg 이종접합을 이용한 UV 발광 다이오드)

  • Han, W.S.;Kim, Y.Y.;Kong, B.H.;Cho, H.K.;Lee, J.H.;Kim, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.50-50
    • /
    • 2008
  • ZnO has been extensively studied for optoelectronic applications such as blue and ultraviolet (UV) light emitters and detectors, because it has a wide band gap (3.37 eV) anda large exciton binding energy of ~60 meV over GaN (~26 meV). However, the fabrication of the light emitting devices using ZnO homojunctions is suffered from the lack of reproducibility of the p-type ZnO with high hall concentration and mobility. Thus, the ZnO-based p-n heterojunction light emitting diode (LED) using p-Si and p-GaN would be expected to exhibit stable device performance compared to the homojunction LED. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducibleavailability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices with low defect density. However, the electroluminescence (EL) of the device using n-ZnO/p-GaN heterojunctions shows the blue and greenish emissions, which are attributed to the emission from the p-GaN and deep-level defects. In this work, the n-ZnO:Ga/p-GaN:Mg heterojunction light emitting diodes (LEDs) were fabricated at different growth temperatures and carrier concentrations in the n-type region. The effects of the growth temperature and carrier concentration on the electrical and emission properties were investigated. The I-V and the EL results showed that the device performance of the heterostructure LEDs, such as turn-on voltage and true ultraviolet emission, developed through the insertion of a thin intrinsic layer between n-ZnO:Ga and p-GaN:Mg. This observation was attributed to a lowering of the energy barriers for the supply of electrons and holes into intrinsic ZnO, and recombination in the intrinsic ZnO with the absence of deep level emission.

  • PDF

Growth and Phytochemical Contents of Ice Plant as Affected by Light Quality in a Closed-type Plant Production System (완전제어형 식물생산시스템에서 광질에 따른 아이스플랜트의 생육과 기능성물질 함량)

  • Kim, Young Jin;Kim, Hye Min;Hwang, Seung Jae
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.878-885
    • /
    • 2016
  • A study was conducted to examine the effects of light quality on the growth and phytochemical contents of ice plant in a closed-type plant production system. Seeds were sown in a 128-cell plug tray using rockwool. The seedlings were then transplanted into a deep floating technique system with recirculating nutrient solution (EC $1.5dS{\cdot}m^{-1}$, pH 6.5) in a closed-type plant production system. The nutrient solution was supplied at two weeks after transplanting with 2.0 mM NaCl concentration in all treatments for the development of the bladder cells. The three light sources with different light qualities used were as followed; FL (fluorescent lamps), combined RW LED (red:white = 7:3), and combined RBW LED (red:blue:white = 8:1:1) at $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD with a photoperiod of 14/10 hours (light/dark). The results showed that the FL treatment had the greatest growth enhancement effects on the leaf area and the fresh and dry weights of the shoots and roots. The SPAD values were significantly higher under the FL and RBW LED treatments, at 29.8 and 30.6, respectively. No significant difference was observed in salinity under all treatments. Chlorophyll fluorescence was significantly higher under the FL treatment. The total phenol content and antioxidant activity were the highest under the RBW LED treatment. The total flavonoid content was significantly higher under the RBW LED and FL treatments. Hence, the results indicate that the growth of ice plant was maximized under the FL treatment. The phytochemical contents were maximized under the RBW LED treatment.

Applicability of Artificial Light Source and Newly Developed Growing Medium for Lettuce Cultivation in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 상추재배를 위한 인공광원과 신개발 배지의 적용)

  • Lee, Hye Ri;Kim, Hye Min;Kim, Hyeon Min;Park, Sang Hyun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.134-142
    • /
    • 2019
  • This study was conducted to evaluate the growth characteristics of lettuce (Lactuca sativa L.) as affected by artificial light sources and different growing media in a closed-type plant production system (CPPS). The lettuce seeds were sown in the 128-cell plug tray filled with 5 different growing media such as urethane sponge (US), rock-wool (RW), Q-plug (QP), TP-S2 (TP) and PU-7B (PU). The germination rate of lettuce seeds was examined during 12 days after sowing. On the 13 days after sowing, the lettuce seedlings were transplanted in a CPPS with temperature $25{\pm}1^{\circ}C$ and nutrient solution (EC $2.0dS{\cdot}m^{-1}$, pH 6.5) using recirculating deep floating technique system. The light sources were set with FL (fluorescent lamps) and combined RB LEDs (red : blue = 7 : 3) with $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and a photoperiod of 14/10 hours (light/dark). The initial germination rate of lettuce was the highest in TP. The final germination and mean daily germination were the significantly highest in RW, QP and TP. The plant height, leaf length, leaf width, leaf area, and fresh and dry weights of shoot were the greatest in QP irradiated with RB LED. The number of leaves, fresh and dry weights of root and SPAD were the greatest in QP and TP irradiated with RB LED. The root length was the longest in TP irradiated with RB LED. Therefore, these results indicate that RB LED was effective for the growth of lettuce and it was also found that the QP and TP were effective for the germination and growth of lettuce in a CPPS. In addition, we confirmed the applicability of the newly developed growing medium TP for the lettuce production in a CPPS.