• Title/Summary/Keyword: Deep Belief Network

Search Result 35, Processing Time 0.026 seconds

A prediction of overall survival status by deep belief network using Python® package in breast cancer: a nationwide study from the Korean Breast Cancer Society

  • Ryu, Dong-Won
    • Korean Journal of Artificial Intelligence
    • /
    • v.6 no.2
    • /
    • pp.11-15
    • /
    • 2018
  • Breast cancer is one of the leading causes of cancer related death among women. So prediction of overall survival status is important into decided in adjuvant treatment. Deep belief network is a kind of artificial intelligence (AI). We intended to construct prediction model by deep belief network using associated clinicopathologic factors. 103881 cases were found in the Korean Breast Cancer Registry. After preprocessing of data, a total of 15733 cases were enrolled in this study. The median follow-up period was 82.4 months. In univariate analysis for overall survival (OS), the patients with advanced AJCC stage showed relatively high HR (HR=1.216 95% CI: 0.011-289.331, p=0.001). Based on results of univariate and multivariate analysis, input variables for learning model included 17 variables associated with overall survival rate. output was presented in one of two states: event or cencored. Individual sensitivity of training set and test set for predicting overall survival status were 89.6% and 91.2% respectively. And specificity of that were 49.4% and 48.9% respectively. So the accuracy of our study for predicting overall survival status was 82.78%. Prediction model based on Deep belief network appears to be effective in predicting overall survival status and, in particular, is expected to be applicable to decide on adjuvant treatment after surgical treatment.

Android malicious code Classification using Deep Belief Network

  • Shiqi, Luo;Shengwei, Tian;Long, Yu;Jiong, Yu;Hua, Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.454-475
    • /
    • 2018
  • This paper presents a novel Android malware classification model planned to classify and categorize Android malicious code at Drebin dataset. The amount of malicious mobile application targeting Android based smartphones has increased rapidly. In this paper, Restricted Boltzmann Machine and Deep Belief Network are used to classify malware into families of Android application. A texture-fingerprint based approach is proposed to extract or detect the feature of malware content. A malware has a unique "image texture" in feature spatial relations. The method uses information on texture image extracted from malicious or benign code, which are mapped to uncompressed gray-scale according to the texture image-based approach. By studying and extracting the implicit features of the API call from a large number of training samples, we get the original dynamic activity features sets. In order to improve the accuracy of classification algorithm on the features selection, on the basis of which, it combines the implicit features of the texture image and API call in malicious code, to train Restricted Boltzmann Machine and Back Propagation. In an evaluation with different malware and benign samples, the experimental results suggest that the usability of this method---using Deep Belief Network to classify Android malware by their texture images and API calls, it detects more than 94% of the malware with few false alarms. Which is higher than shallow machine learning algorithm clearly.

Hierarchical Deep Belief Network for Activity Recognition Using Smartphone Sensor (스마트폰 센서를 이용하여 행동을 인식하기 위한 계층적인 심층 신뢰 신경망)

  • Lee, Hyunjin
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1421-1429
    • /
    • 2017
  • Human activity recognition has been studied using various sensors and algorithms. Human activity recognition can be divided into sensor based and vision based on the method. In this paper, we proposed an activity recognition system using acceleration sensor and gyroscope sensor in smartphone among sensor based methods. We used Deep Belief Network (DBN), which is one of the most popular deep learning methods, to improve an accuracy of human activity recognition. DBN uses the entire input set as a common input. However, because of the characteristics of different time window depending on the type of human activity, the RBMs, which is a component of DBN, are configured hierarchically by combining them from different time windows. As a result of applying to real data, The proposed human activity recognition system showed stable precision.

Dysarthric speaker identification with different degrees of dysarthria severity using deep belief networks

  • Farhadipour, Aref;Veisi, Hadi;Asgari, Mohammad;Keyvanrad, Mohammad Ali
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.643-652
    • /
    • 2018
  • Dysarthria is a degenerative disorder of the central nervous system that affects the control of articulation and pitch; therefore, it affects the uniqueness of sound produced by the speaker. Hence, dysarthric speaker recognition is a challenging task. In this paper, a feature-extraction method based on deep belief networks is presented for the task of identifying a speaker suffering from dysarthria. The effectiveness of the proposed method is demonstrated and compared with well-known Mel-frequency cepstral coefficient features. For classification purposes, the use of a multi-layer perceptron neural network is proposed with two structures. Our evaluations using the universal access speech database produced promising results and outperformed other baseline methods. In addition, speaker identification under both text-dependent and text-independent conditions are explored. The highest accuracy achieved using the proposed system is 97.3%.

A Robust Approach for Human Activity Recognition Using 3-D Body Joint Motion Features with Deep Belief Network

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1118-1133
    • /
    • 2017
  • Computer vision-based human activity recognition (HAR) has become very famous these days due to its applications in various fields such as smart home healthcare for elderly people. A video-based activity recognition system basically has many goals such as to react based on people's behavior that allows the systems to proactively assist them with their tasks. A novel approach is proposed in this work for depth video based human activity recognition using joint-based motion features of depth body shapes and Deep Belief Network (DBN). From depth video, different body parts of human activities are segmented first by means of a trained random forest. The motion features representing the magnitude and direction of each joint in next frame are extracted. Finally, the features are applied for training a DBN to be used for recognition later. The proposed HAR approach showed superior performance over conventional approaches on private and public datasets, indicating a prominent approach for practical applications in smartly controlled environments.

Reliable Fault Diagnosis Method Based on An Optimized Deep Belief Network for Gearbox

  • Oybek Eraliev;Ozodbek Xakimov;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.54-63
    • /
    • 2023
  • High and intermittent loading cycles induce fatigue damage to transmission components, resulting in premature gearbox failure. To identify gearbox defects, numerous vibration-based diagnostics techniques, using several artificial intelligence (AI) algorithms, have recently been presented. In this paper, an optimized deep belief network (DBN) model for gearbox problem diagnosis was designed based on time-frequency visual pattern identification. To optimize the hyperparameters of the model, a particle swarm optimization (PSO) approach was integrated into the DBN. The proposed model was tested on two gearbox datasets: a wind turbine gearbox and an experimental gearbox. The optimized DBN model demonstrated strong and robust performance in classification accuracy. In addition, the accuracy of the generated datasets was compared using traditional ML and DL algorithms. Furthermore, the proposed model was evaluated on different partitions of the dataset. The results showed that, even with a small amount of sample data, the optimized DBN model achieved high accuracy in diagnosis.

Enhanced technique for Arabic handwriting recognition using deep belief network and a morphological algorithm for solving ligature segmentation

  • Essa, Nada;El-Daydamony, Eman;Mohamed, Ahmed Atwan
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.774-787
    • /
    • 2018
  • Arabic handwriting segmentation and recognition is an area of research that has not yet been fully understood. Dealing with Arabic ligature segmentation, where the Arabic characters are connected and unconstrained naturally, is one of the fundamental problems when dealing with the Arabic script. Arabic character-recognition techniques consider ligatures as new classes in addition to the classes of the Arabic characters. This paper introduces an enhanced technique for Arabic handwriting recognition using the deep belief network (DBN) and a new morphological algorithm for ligature segmentation. There are two main stages for the implementation of this technique. The first stage involves an enhanced technique of the Sari segmentation algorithm, where a new ligature segmentation algorithm is developed. The second stage involves the Arabic character recognition using DBNs and support vector machines (SVMs). The two stages are tested on the IFN/ENIT and HACDB databases, and the results obtained proved the effectiveness of the proposed algorithm compared with other existing systems.

Pan evaporation modeling using deep learning theory (Deep learning 이론을 이용한 증발접시 증발량 모형화)

  • Seo, Youngmin;Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.392-395
    • /
    • 2017
  • 본 연구에서는 일 증발접시 증발량 산정을 위한 딥러닝 (deep learning) 모형의 적용성을 평가하였다. 본 연구에서 적용된 딥러닝 모형은 deep belief network (DBN) 기반 deep neural network (DNN) (DBN-DNN) 모형이다. 모형 적용성 평가를 위하여 부산 관측소에서 측정된 기상자료를 활용하였으며, 증발량과의 상관성이 높은 기상변수들 (일사량, 일조시간, 평균지상온도, 최대기온)의 조합을 고려하여 입력변수집합 (Set 1, Set 2, Set 3)별 모형을 구축하였다. DBN-DNN 모형의 성능은 통계학적 모형성능 평가지표 (coefficient of efficiency, CE; coefficient of determination, $r^2$; root mean square error, RMSE; mean absolute error, MAE)를 이용하여 평가되었으며, 기존의 두가지 형태의 ANN (artificial neural network), 즉 모형학습 시 SGD (stochastic gradient descent) 및 GD (gradient descent)를 각각 적용한 ANN-SGD 및 ANN-GD 모형과 비교하였다. 효과적인 모형학습을 위하여 각 모형의 초매개변수들은 GA (genetic algorithm)를 이용하여 최적화하였다. 그 결과, Set 1에 대하여 ANN-GD1 모형, Set 2에 대하여 DBN-DNN2 모형, Set 3에 대하여 DBN-DNN3 모형이 가장 우수한 모형 성능을 나타내는 것으로 분석되었다. 비록 비교 모형들 사이의 모형성능이 큰 차이를 보이지는 않았으나, 모든 입력집합에 대하여 DBN-DNN3, DBN-DNN2, ANN-SGD3 순으로 모형 효율성이 우수한 것으로 나타났다.

  • PDF

Vowel Classification of Imagined Speech in an Electroencephalogram using the Deep Belief Network (Deep Belief Network를 이용한 뇌파의 음성 상상 모음 분류)

  • Lee, Tae-Ju;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.59-64
    • /
    • 2015
  • In this paper, we found the usefulness of the deep belief network (DBN) in the fields of brain-computer interface (BCI), especially in relation to imagined speech. In recent years, the growth of interest in the BCI field has led to the development of a number of useful applications, such as robot control, game interfaces, exoskeleton limbs, and so on. However, while imagined speech, which could be used for communication or military purpose devices, is one of the most exciting BCI applications, there are some problems in implementing the system. In the previous paper, we already handled some of the issues of imagined speech when using the International Phonetic Alphabet (IPA), although it required complementation for multi class classification problems. In view of this point, this paper could provide a suitable solution for vowel classification for imagined speech. We used the DBN algorithm, which is known as a deep learning algorithm for multi-class vowel classification, and selected four vowel pronunciations:, /a/, /i/, /o/, /u/ from IPA. For the experiment, we obtained the required 32 channel raw electroencephalogram (EEG) data from three male subjects, and electrodes were placed on the scalp of the frontal lobe and both temporal lobes which are related to thinking and verbal function. Eigenvalues of the covariance matrix of the EEG data were used as the feature vector of each vowel. In the analysis, we provided the classification results of the back propagation artificial neural network (BP-ANN) for making a comparison with DBN. As a result, the classification results from the BP-ANN were 52.04%, and the DBN was 87.96%. This means the DBN showed 35.92% better classification results in multi class imagined speech classification. In addition, the DBN spent much less time in whole computation time. In conclusion, the DBN algorithm is efficient in BCI system implementation.

Artificial speech bandwidth extension technique based on opus codec using deep belief network (심층 신뢰 신경망을 이용한 오푸스 코덱 기반 인공 음성 대역 확장 기술)

  • Choi, Yoonsang;Li, Yaxing;Kang, Sangwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.70-77
    • /
    • 2017
  • Bandwidth extension is a technique to improve speech quality, intelligibility and naturalness, extending from the 300 ~ 3,400 Hz narrowband speech to the 50 ~ 7,000 Hz wideband speech. In this paper, an Artificial Bandwidth Extension (ABE) module embedded in the Opus audio decoder is designed using the information of narrowband speech to reduce the computational complexity of LPC (Linear Prediction Coding) and LSF (Line Spectral Frequencies) analysis and the algorithm delay of the ABE module. We proposed a spectral envelope extension method using DBN (Deep Belief Network), one of deep learning techniques, and the proposed scheme produces better extended spectrum than the traditional codebook mapping method.