• 제목/요약/키워드: Deep Learning

검색결과 5,513건 처리시간 0.035초

Application of Deep Learning: A Review for Firefighting

  • Shaikh, Muhammad Khalid
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.73-78
    • /
    • 2022
  • The aim of this paper is to investigate the prevalence of Deep Learning in the literature on Fire & Rescue Service. It is found that deep learning techniques are only beginning to benefit the firefighters. The popular areas where deep learning techniques are making an impact are situational awareness, decision making, mental stress, injuries, well-being of the firefighter such as his sudden fall, inability to move and breathlessness, path planning by the firefighters while getting to an fire scene, wayfinding, tracking firefighters, firefighter physical fitness, employment, prediction of firefighter intervention, firefighter operations such as object recognition in smoky areas, firefighter efficacy, smart firefighting using edge computing, firefighting in teams, and firefighter clothing and safety. The techniques that were found applied in firefighting were Deep learning, Traditional K-Means clustering with engineered time and frequency domain features, Convolutional autoencoders, Long Short-Term Memory (LSTM), Deep Neural Networks, Simulation, VR, ANN, Deep Q Learning, Deep learning based on conditional generative adversarial networks, Decision Trees, Kalman Filters, Computational models, Partial Least Squares, Logistic Regression, Random Forest, Edge computing, C5 Decision Tree, Restricted Boltzmann Machine, Reinforcement Learning, and Recurrent LSTM. The literature review is centered on Firefighters/firemen not involved in wildland fires. The focus was also not on the fire itself. It must also be noted that several deep learning techniques such as CNN were mostly used in fire behavior, fire imaging and identification as well. Those papers that deal with fire behavior were also not part of this literature review.

Development and Distribution of Deep Fake e-Learning Contents Videos Using Open-Source Tools

  • HO, Won;WOO, Ho-Sung;LEE, Dae-Hyun;KIM, Yong
    • 유통과학연구
    • /
    • 제20권11호
    • /
    • pp.121-129
    • /
    • 2022
  • Purpose: Artificial intelligence is widely used, particularly in the popular neural network theory called Deep learning. The improvement of computing speed and capability expedited the progress of Deep learning applications. The application of Deep learning in education has various effects and possibilities in creating and managing educational content and services that can replace human cognitive activity. Among Deep learning, Deep fake technology is used to combine and synchronize human faces with voices. This paper will show how to develop e-Learning content videos using those technologies and open-source tools. Research design, data, and methodology: This paper proposes 4 step development process, which is presented step by step on the Google Collab environment with source codes. This technology can produce various video styles. The advantage of this technology is that the characters of the video can be extended to any historical figures, celebrities, or even movie heroes producing immersive videos. Results: Prototypes for each case are also designed, developed, presented, and shared on YouTube for each specific case development. Conclusions: The method and process of creating e-learning video contents from the image, video, and audio files using Deep fake open-source technology was successfully implemented.

Deep-Learning-Based Molecular Imaging Biomarkers: Toward Data-Driven Theranostics

  • Choi, Hongyoon
    • 한국의학물리학회지:의학물리
    • /
    • 제30권2호
    • /
    • pp.39-48
    • /
    • 2019
  • Deep learning has been applied to various medical data. In particular, current deep learning models exhibit remarkable performance at specific tasks, sometimes offering higher accuracy than that of experts for discriminating specific diseases from medical images. The current status of deep learning applications to molecular imaging can be divided into a few subtypes in terms of their purposes: differential diagnostic classification, enhancement of image acquisition, and image-based quantification. As functional and pathophysiologic information is key to molecular imaging, this review will emphasize the need for accurate biomarker acquisition by deep learning in molecular imaging. Furthermore, this review addresses practical issues that include clinical validation, data distribution, labeling issues, and harmonization to achieve clinically feasible deep learning models. Eventually, deep learning will enhance the role of theranostics, which aims at precision targeting of pathophysiology by maximizing molecular imaging functional information.

Deep Learning Research Trend Analysis using Text Mining

  • Lee, Jee Young
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.295-301
    • /
    • 2019
  • Since the third artificial intelligence boom was triggered by deep learning, it has been 10 years. It is time to analyze and discuss the research trends of deep learning for the stable development of AI. In this regard, this study systematically analyzes the trends of research on deep learning over the past 10 years. We collected research literature on deep learning and performed LDA based topic modeling analysis. We analyzed trends by topic over 10 years. We have also identified differences among the major research countries, China, the United States, South Korea, and United Kingdom. The results of this study will provide insights into research direction on deep learning in the future, and provide implications for the stable development strategy of deep learning.

Comparison of Traditional Workloads and Deep Learning Workloads in Memory Read and Write Operations

  • Jeongha Lee;Hyokyung Bahn
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.164-170
    • /
    • 2023
  • With the recent advances in AI (artificial intelligence) and HPC (high-performance computing) technologies, deep learning is proliferated in various domains of the 4th industrial revolution. As the workload volume of deep learning increasingly grows, analyzing the memory reference characteristics becomes important. In this article, we analyze the memory reference traces of deep learning workloads in comparison with traditional workloads specially focusing on read and write operations. Based on our analysis, we observe some unique characteristics of deep learning memory references that are quite different from traditional workloads. First, when comparing instruction and data references, instruction reference accounts for a little portion in deep learning workloads. Second, when comparing read and write, write reference accounts for a majority of memory references, which is also different from traditional workloads. Third, although write references are dominant, it exhibits low reference skewness compared to traditional workloads. Specifically, the skew factor of write references is small compared to traditional workloads. We expect that the analysis performed in this article will be helpful in efficiently designing memory management systems for deep learning workloads.

학습전략과 심층학습 (Learning strategies and deep learning)

  • 신홍임
    • 의학교육논단
    • /
    • 제11권1호
    • /
    • pp.35-43
    • /
    • 2009
  • Learning strategies are defined as behaviors and thoughts that a learner engages in during learning and that are intended to influence the learner's encoding process. Today, demands for teaching how to learn increase, because there is a lot of complex material which is delivered to students. But learning strategies shouldn't be identified as tricks of students for achieving high scores in exams. Cognitive researchers and theorists assume that learning strategies are related to two types of learning processing, which are described as 'surface learning' and 'deep learning'. In addition learning strategies are associated with learning motivation. Students with 'meaning orientation' who struggle for deep learning, are intrinsically motivated, whereas students with 'reproduction orientation' or 'achieving orientation' are extrinsically motivated. Therefore, to foster active learning and intrinsic motivation of students, it isn't enough to just teach how to learn. Changes of curriculum and assessment methods, that stimulate deep learning and curiosity of students are needed with educators and learners working cooperatively.

Enhanced Machine Learning Algorithms: Deep Learning, Reinforcement Learning, and Q-Learning

  • Park, Ji Su;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1001-1007
    • /
    • 2020
  • In recent years, machine learning algorithms are continuously being used and expanded in various fields, such as facial recognition, signal processing, personal authentication, and stock prediction. In particular, various algorithms, such as deep learning, reinforcement learning, and Q-learning, are continuously being improved. Among these algorithms, the expansion of deep learning is rapidly changing. Nevertheless, machine learning algorithms have not yet been applied in several fields, such as personal authentication technology. This technology is an essential tool in the digital information era, walking recognition technology as promising biometrics, and technology for solving state-space problems. Therefore, algorithm technologies of deep learning, reinforcement learning, and Q-learning, which are typical machine learning algorithms in various fields, such as agricultural technology, personal authentication, wireless network, game, biometric recognition, and image recognition, are being improved and expanded in this paper.

딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출 (Deriving adoption strategies of deep learning open source framework through case studies)

  • 최은주;이준영;한인구
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.27-65
    • /
    • 2020
  • 많은 정보통신기술 기업들은 자체적으로 개발한 인공지능 기술을 오픈소스로 공개하였다. 예를 들어, 구글의 TensorFlow, 페이스북의 PyTorch, 마이크로소프트의 CNTK 등 여러 기업들은 자신들의 인공지능 기술들을 공개하고 있다. 이처럼 대중에게 딥러닝 오픈소스 소프트웨어를 공개함으로써 개발자 커뮤니티와의 관계와 인공지능 생태계를 강화하고, 사용자들의 실험, 적용, 개선을 얻을 수 있다. 이에 따라 머신러닝 분야는 급속히 성장하고 있고, 개발자들 또한 여러가지 학습 알고리즘을 재생산하여 각 영역에 활용하고 있다. 하지만 오픈소스 소프트웨어에 대한 다양한 분석들이 이루어진 데 반해, 실제 산업현장에서 딥러닝 오픈소스 소프트웨어를 개발하거나 활용하는데 유용한 연구 결과는 미흡한 실정이다. 따라서 본 연구에서는 딥러닝 프레임워크 사례연구를 통해 해당 프레임워크의 도입 전략을 도출하고자 한다. 기술-조직-환경 프레임워크를 기반으로 기존의 오픈 소스 소프트웨어 도입과 관련된 연구들을 리뷰하고, 이를 바탕으로 두 기업의 성공 사례와 한 기업의 실패 사례를 포함한 총 3 가지 기업의 도입 사례 분석을 통해 딥러닝 프레임워크 도입을 위한 중요한 5가지 성공 요인을 도출하였다: 팀 내 개발자의 지식과 전문성, 하드웨어(GPU) 환경, 데이터 전사 협력 체계, 딥러닝 프레임워크 플랫폼, 딥러닝 프레임워크 도구 서비스. 그리고 도출한 성공 요인을 실현하기 위한 딥러닝 프레임워크의 단계적 도입 전략을 제안하였다: 프로젝트 문제 정의, 딥러닝 방법론이 적합한 기법인지 확인, 딥러닝 프레임워크가 적합한 도구인지 확인, 기업의 딥러닝 프레임워크 사용, 기업의 딥러닝 프레임워크 확산. 본 연구를 통해 각 산업과 사업의 니즈에 따라, 딥러닝 프레임워크를 개발하거나 활용하고자 하는 기업에게 전략적인 시사점을 제공할 수 있을 것이라 기대된다.

Deep Learning을 기반으로 한 Feature Extraction 알고리즘의 분석 (Analysis of Feature Extraction Algorithms Based on Deep Learning)

  • 김경태;이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.60-67
    • /
    • 2020
  • Recently, artificial intelligence related technologies including machine learning are being applied to various fields, and the demand is also increasing. In particular, with the development of AR, VR, and MR technologies related to image processing, the utilization of computer vision based on deep learning has increased. The algorithms for object recognition and detection based on deep learning required for image processing are diversified and advanced. Accordingly, problems that were difficult to solve with the existing methodology were solved more simply and easily by using deep learning. This paper introduces various deep learning-based object recognition and extraction algorithms used to detect and recognize various objects in an image and analyzes the technologies that attract attention.

Recent advances in deep learning-based side-channel analysis

  • Jin, Sunghyun;Kim, Suhri;Kim, HeeSeok;Hong, Seokhie
    • ETRI Journal
    • /
    • 제42권2호
    • /
    • pp.292-304
    • /
    • 2020
  • As side-channel analysis and machine learning algorithms share the same objective of classifying data, numerous studies have been proposed for adapting machine learning to side-channel analysis. However, a drawback of machine learning algorithms is that their performance depends on human engineering. Therefore, recent studies in the field focus on exploiting deep learning algorithms, which can extract features automatically from data. In this study, we survey recent advances in deep learning-based side-channel analysis. In particular, we outline how deep learning is applied to side-channel analysis, based on deep learning architectures and application methods. Furthermore, we describe its properties when using different architectures and application methods. Finally, we discuss our perspective on future research directions in this field.