• Title/Summary/Keyword: Decryption Failures

Search Result 2, Processing Time 0.02 seconds

Analysis on Decryption Failure Probability of TiGER (TiGER의 복호화 실패율 분석)

  • Seungwoo Lee;Jonghyun Kim;Jong Hwan Park
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.157-166
    • /
    • 2024
  • Probability of decryption failure of a public key cryptography based on LWE(learning with errors) is determined by its architecture and parameter settings. Since large decryption failure probability leads to attacks[1] on scheme as well as degradation of performance, TiGER[2], a Ring-LWE(R)-based KEM proposed for the first round of KpqC, tried to reduce the decryption failure probability by using error correction code Xef and D2 encoding method. However, D'Anvers et al. has shown that the commonly assumed independence of each bit error is not established since in the case of an encryption scheme based on Ring-LWE(R) using an error correction code, there is error dependency which is not negligible[3]. In this paper, since TiGER does not consider the error dependency, we calcualte the decryption failure probability of TiGER by considering the error dependency. In addition, we found that the bit error probability is incorrectly calculated in TiGER, so we present the correct calculation.

Analysing the Combined Kerberos Timed Authentication Protocol and Frequent Key Renewal Using CSP and Rank Functions

  • Kirsal-Ever, Yoney;Eneh, Agozie;Gemikonakli, Orhan;Mostarda, Leonardo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4604-4623
    • /
    • 2014
  • Authentication mechanisms coupled with strong encryption techniques are used for network security purposes; however, given sufficient time, well-equipped intruders are successful for compromising system security. The authentication protocols often fail when they are analysed critically. Formal approaches have emerged to analyse protocol failures. In this study, Communicating Sequential Processes (CSP) which is an abstract language designed especially for the description of communication patterns is employed. Rank functions are also used for verification and analysis which are helpful to establish that some critical information is not available to the intruder. In order to establish this, by assigning a value or rank to each critical information, it is shown that all the critical information that can be generated within the network have a particular characterizing property. This paper presents an application of rank functions approach to an authentication protocol that combines delaying the decryption process with timed authentication while keys are dynamically renewed under pseudo-secure situations. The analysis and verification of authentication properties and results are presented and discussed.