• Title/Summary/Keyword: Decreasing current density

Search Result 115, Processing Time 0.025 seconds

Magnetic Interaction Effect on Activation Volume and Area of CoPt Magnetic Films (자성막 CoPt의 자기상호작용이 활성화 부피와 면적에 미치는 영향)

  • Kim, Hyeon Soo;Jeong, Soon Young;Suh, Su Jeong
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.6
    • /
    • pp.188-192
    • /
    • 2013
  • The magnetic interaction effect on the magnetic activation volume and area of electrodeposited CoPt magnetic films was investigated. The dipolar interaction was predominant interaction mechanism for all samples. And the interaction strength was increased with decreasing current density and increased with increasing sample thickness. Although the activation volumes of the samples fabricated at low current density were larger than those of the high current density samples, the sample thickness seemed to have little influence on the variation of activation volume. But it was found that the activation area was apparently affected by the magnetic interaction strength as well as the current density.

Influences of Electrodeposition Variables on Mechanical Properties of Ni-Mn Electrodepositions (Ni-Mn 전착층의 기계적 성질에 미치는 공정조건의 영향)

  • Shin, Ji-Wung;Yang, Seung-Gi;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.102-106
    • /
    • 2014
  • Nickel electrodeposition from sulfamate bath has several benefits such as low internal stress, high current density and good ductility. In nickel deposited layers, sulfur induces high temperature embrittlement, as Ni-S compound has a low melting temperature. To overcome high temperature embrittlement problem, adding manganese is one of the good methods. Manganese makes Mn-S compound having a high melting temperature above $1500^{\circ}C$. In this work, the mechanical properties of Ni-Mn deposited layers were investigated by using various process variables such as concentration of Mn$(NH_2SO_3)_2$, current density, and bath temperature. As the Mn content of electrodeposited layers was increased, internal stress and hardness were increased. By increasing current density, internal stress increased, but hardness decreased. With increasing the bath temperature from 55 to $70^{\circ}C$, internal stress of Ni deposit layers decreased, but hardness didn't change by bath temperature. It was likely that eutectoid manganese led to lattice deformation, and the lattice deformation increased hardness and internal stress in Ni-Mn layers. Increasing current density and decreasing bath temperature would increase a mount of $H_2$ absorption, which was a cause for the rise of internal stress.

Optimization and Characterization of Gate Electrode Dependent Flicker Noise in Silicon Nanowire Transistors

  • Anandan, P.;Mohankumar, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1343-1348
    • /
    • 2014
  • The low frequency noise in Silicon Nanowire Field Effect Transistors is analyzed by characterizing the gate electrode dependence on various geometrical parameters. It shows that gate electrodes have a strong impact in the flicker noise of Silicon Nanowire Field effect transistors. Optimization of gate electrode was done by comparing different performance metrics such a DIBL, SS, $I_{on}/I_{off}$ and fringing capacitance using TCAD simulations. Molybdenum based gate electrode showed significant improvement in terms of high drive current, Low DIBL and high $I_{on}/I_{off}$. The noise power sepctral density is reduced by characterizing the device at higher frequencies. Silicon Nanowire with Si3N4 spacer decreases the drain current spectral density which interms reduces the fringing fields there by decreasing the flicker noise.

Evaluation of Critical Current Density of FeAs-based Superconductors

  • Otabe, Edmund S.;Kiuchi, Masaru;Matsushita, Teruo;Ni, Baorong;Qi, Yanpeng;Wang, Lei;Gao, Zhaoshun;Wang, Dongliang;Zhang, Xianping;Ma, Yanwei;Nakajima, Yasuyuki;Tamegai, Tsuyoshi
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.1-7
    • /
    • 2012
  • In this review paper, we report the characteristics of the critical current density in FeAs based superconductors which is newly discovered by Hosono group of Tokyo Institute of Technology on 2008. Since the many specimens in present stage are not single crystals, there are two kinds of critical current density observed in the specimens which are so-called local and global critical current densities. Therefore, it is necessary to evaluate both kinds of critical current densities. The history effect in which the global critical current density shows different values in increasing and decreasing magnetic field is also observed when the specimens have the local and the global critical current densities. The wire which critical current is 180 A is successfully developed with using the knowledge of abovementioned characteristics of two kinds of critical current densities and the history effect.

Microstructure of zinc electrodeposits in acid sulfate solution (黃酸亞鉛 電解液을 使用한 亞鉛電着層의 顯微鏡 組織)

  • Ye, Gil-Chon;An, Deok-Su;Kim, Yong-Ung
    • Journal of the Korean institute of surface engineering
    • /
    • v.18 no.2
    • /
    • pp.53-60
    • /
    • 1985
  • The microstructure of zine electrodeposits was investigated by using zinc sulfate solution in still bath. The cathode current efficiency decreased with increasing current density, and decreasing temperature. The preferred orientation of the zinc electrodeposits changed from (10.3) texture to(10.${\ell}$)-(00.1)(${\ell}$=1, 2, 3) texture through (10.2)-(10.3) preferred orientation with increasing cathode over potential. The surface morphology of zinc electrodeposits changed from the dendritic growth with granular crystallites to the blocks of hexagonal crystallites packed together with increasing current density. The microstructure of cross section of the above deposits are the rough granular structure and columnar structure respectively.

  • PDF

A Study on an Electro-Magnetic System far Arc Rotating in MIAB Welding (MIAB용접에서 아크 회전을 위한 전자기 시스템에 관한 연구)

  • 최동혁;김재웅
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.391-398
    • /
    • 2001
  • MIAB welding method uses a rotating arc as its heat source and is known to be efficient in pipe butt welding. The arc is rotated around the weld line by the electro-magnetic force resulting from the interaction of arc current and magnetic field. This paper is concerned with the experiment of initial stage for process control, monitoring for weld quality, and the design of coil system which is efficient of flux generation and concentration. A coil system for the generation of magnetic flux was designed and constructed. Magnetic flux density and arc rotating behavior are important factors in MIAB welding, so the relations between these factors and process parameters were investigated. Various experiments were performed for the steel pipes(48.1mm O.D and 2.0mm thickness). The magnetic flux density is increased by increasing exciting current and decreasing gap size. The maximum of arc rotating frequency is affected by exciting current and gap size. However, the variations of arc rotating frequency during welding and then the melting process are mainly influenced by welding current. Thus, it is considered that the results of this study can be used as important data on the monitoring for weld quality and the design of efficient coil system.

  • PDF

The change of the hardness and yield strength in the nickel electrodeposits depending upon the electrolysis condition (전해조건에 따른 니켈전착층의 경도와 항복 강도의 변화)

  • 예길촌;김광수
    • Journal of the Korean institute of surface engineering
    • /
    • v.16 no.1
    • /
    • pp.3-9
    • /
    • 1983
  • The change of the hardness and yield strength depending upon the electrolysis conditions was investigated for Watts and bright nickel electrodeposits. The hardness of Watts nickel electrodeposits decreased with increasing current density in the range of 1-15A/Am2, while it increased with increasing bath temperature. The hardness of bright nickel deposits increased noticebly in comparison with that of Watts nickel electro-deposits. The hardness and the yield strength of the bright nickel electrodeposits increased considerably with decreasing current density and the highest value was obtained at the lowest current density (1A/dm2), while they decreased noticebly at the bath temperature of 80$^{\circ}C$ in comparison with that of 40-60$^{\circ}C$. The change of the hardness and the yield strength of bright nickel electrodeposits depending upon the electrolysis conditions could be mainly attributed to the variation of organic additives codeposited in the electrodeposits. The recrystallizatioin temperature(50% softening temperature) of the Wattss and the bright nickel electro-deposits was 520-280$^{\circ}C$ and 350-410$^{\circ}C$ respectively and then the recystallization temperature of bright nickel deposits was lower than that of the Watts nickel electrodeposits.

  • PDF

Inhibition Effects of Chromate, Phosphate, Sulfate, and Borate on Chloride Pitting Corrosion of Al

  • Lee, Ho-Chun;Isaacs, Hugh S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.184-189
    • /
    • 2008
  • Inhibitive effects of chromate, phosphate, sulfate, and borate on chloride pitting corrosion of Al have been investigated using cyclic voltammetry. During the anodic oxide growth, the critical concentration of chloride for pit initiation decreased in the order: chromate > phosphate > sulfate > borate, and the maximum pitting current density increases in the reverse order: chromate < phosphate < sulfate < borate. The decreasing pitting current density was observed in the successive polarization cycles, which was attributed to the aging of Al oxides and field relaxation at oxide/solution interface.

A study of hydrogen embrittlement behavior in E.B welded 250,300 grade 18% Ni maraging steel (전자비임 용접한 250 및 300 Grade 18% Ni Maraging 강의 수소취화 거동에 관한 연구)

  • 윤한상;정병호
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.53-59
    • /
    • 1987
  • The effect of applied stress, current density and heat-treatment after welding on the time to fracture, fracture behavior was investigated by the method of constant load tensile testing under catholic charging with hydrogen in E.B. welded 250,300 Grade 18% Ni Maraging steel sheet. The main results obtained are as follows: 1. All specimen showed the characteristic delayed failure and the time to fracture showed decreasing tendency with the increase in current density and applied stress. 2. Hydrogen embitterment susceptibility of notched specimen after solution-treatment and aging after welding was more increased than that of aged smooth specimen and as welded specimen. 3. Fracture surface showed a typical intergranular fracture on the border, a dimple pattern in the center of specimen and some quasi-cleavage fracture between the intergranular and the dimple.

  • PDF

A Study on the Characteristics of Cathodic Protection by Al-Alloy Sacrificial Anode in Marine Environment (해양환경중에서 A1-합금희생양극에 의한 음극방식특성)

  • 이연호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.53-60
    • /
    • 1992
  • In this study, cathodic protection experiment was carried out by Al-alloy sacrificial anode in marine environments which have specific resistance($\rho$) if 25~7000$\Omega$.cm and investigated protection potential, current density and loss rate of Al-alloy sacrificial anode. The main results resistance($\rho$) of 400$\Omega$.cm, the cathodic protection potential appears high about-720 mV(SCE). But below specific resistance($\rho$) of 300$\Omega$.cm, the cathodic protection potential appears low about-770 mV(SCE) and simultaneously, cathode is protected sufficiently. 2) The loss rate of Al-Alloy sacrificial anode became large with decreasing specific resistance and increasing the ratio(A sub(c)/A sub(a) of bared surface area of anode and cathode. 3) The loss rate of Al-alloy sacrificial anode(w) to the mean current density of anode(i) is as follows. w=ai+b (a, b : experimental constants)

  • PDF