• Title/Summary/Keyword: Decomposition approach

Search Result 462, Processing Time 0.029 seconds

Hierarchical Order Statistics Filtering for Fast Bi-Dimensional Empirical Mode Decomposition

  • Semiz, Serkan;Celebi, Anil;Urhan, Oguzhan
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.695-702
    • /
    • 2016
  • A hierarchical approach for fast bi-dimensional empirical mode decomposition (B-EMD) is proposed. The presented approach utilizes an efficient window size determination scheme that enables the multi-level computation of the order statistics filter (OSF). Our detailed experiments show that the proposed OSF computation approach allows a significantly faster computation of an EMD without degrading the decomposition accuracy.

Decomposition-Based Approach for Designing Performance Measures in Manufacturing System (분해접근법에 기반한 제조시스템에서의 성과지표 설계)

  • Mun, Byeong-Geun;Jo, Gyu-Gap
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.163-166
    • /
    • 2004
  • This paper proposes decomposition-based approach for developing the evaluation factors of performance measures and designing performance measures in manufacturing system. In this paper, the evaluation factors are designed by design decomposition approach and the design process of performance measures is based on the manufacturing system design decomposition.

  • PDF

Domain Decomposition Approach Applied for Two- and Three-dimensional Problems via Direct Solution Methodology

  • Kwak, Jun Young;Cho, Haeseong;Chun, Tae Young;Shin, SangJoon;Bauchau, Olivier A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.177-189
    • /
    • 2015
  • This paper presents an all-direct domain decomposition approach for large-scale structural analysis. The proposed approach achieves computational robustness and efficiency by enforcing the compatibility of the displacement field across the sub-domain boundaries via local Lagrange multipliers and augmented Lagrangian formulation (ALF). The proposed domain decomposition approach was compared to the existing FETI approach in terms of the computational time and memory usage. The parallel implementation of the proposed algorithm was described in detail. Finally, a preliminary validation was attempted for the proposed approach, and the numerical results of two- and three-dimensional problems were compared to those obtained through a dual-primal FETI approach. The results indicate an improvement in the performance as a result of the implementing the proposed approach.

Face Recognition Using Fuzzy Fusion and Wavelet Decomposition Method

  • Kwak, Keun-Chang;Min, Jun-Oh;Chun, Myung-Geun;Witold Pedrycz
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.364-367
    • /
    • 2003
  • In this study, we develop a method for recognizing face images by combining wavelet decomposition, fisherface method, and fuzzy integral. The proposed approach comprises of four main stages. The first stage uses the wavelet decomposition. As a result of this decomposition, we obtain four subimages. The second stage of the approach applies a fisherface method to these four subimage sets. The two last phases are concerned with the generation of the degree of fuzzy membership and the aggregation of the individual classifiers by means of the fuzzy integral. The experimental results obtained for the CNU and Yale face databases reveal that the approach presented in this study yields better classification performance in comparison to the results produced by other classifiers.

  • PDF

Filling Holes in Large Polygon Models Using an Implicit Surface Scheme and the Domain Decomposition Method

  • Yoo, Dong-Jin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.3-10
    • /
    • 2007
  • A new approach based on implicit surface interpolation combined with domain decomposition is proposed for filling complex-shaped holes in a large polygon model, A surface was constructed by creating a smooth implicit surface from an incomplete polygon model through which the actual surface would pass. The implicit surface was defined by a radial basis function, which is a continuous scalar-value function over the domain $R^{3}$. The generated surface consisted of the set of all points at which this scalar function is zero. It was created by placing zero-valued constraints at the vertices of the polygon model. The well-known domain decomposition method was used to treat the large polygon model. The global domain of interest was divided into smaller domains in which the problem could be solved locally. The LU decomposition method was used to solve the set of small local problems; the local solutions were then combined using weighting coefficients to obtain a global solution. The validity of this new approach was demonstrated by using it to fill various holes in large and complex polygon models with arbitrary topologies.

Modal parameter identification of civil structures using symplectic geometry mode decomposition

  • Feng Hu;Lunhai Zhi;Zhixiang Hu;Bo Chen
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.61-73
    • /
    • 2023
  • In this article, a novel structural modal parameters identification methodology is developed to determine the natural frequencies and damping ratios of civil structures based on the symplectic geometry mode decomposition (SGMD) approach. The SGMD approach is a new decomposition algorithm that can decompose the complex response signals with better decomposition performance and robustness. The novel method firstly decomposes the measured structural vibration response signals into individual mode components using the SGMD approach. The natural excitation technique (NExT) method is then used to obtain the free vibration response of each individual mode component. Finally, modal natural frequencies and damping ratios are identified using the direct interpolating (DI) method and a curve fitting function. The effectiveness of the proposed method is demonstrated based on numerical simulation and field measurement. The structural modal parameters are identified utilizing the simulated non-stationary responses of a frame structure and the field measured non-stationary responses of a supertall building during a typhoon. The results demonstrate that the developed method can identify the natural frequencies and damping ratios of civil structures efficiently and accurately.

Decomposition Analysis of Time Series Using Neural Networks (신경망을 이용한 시계열의 분해분석)

  • Jhee, Won-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.1
    • /
    • pp.111-124
    • /
    • 1999
  • This evapaper is toluate the forecasting performance of three neural network(NN) approaches against ARIMA model using the famous time series analysis competition data. The first NN approach is to analyze the second Makridakis (M2) Competition Data using Multilayer Perceptron (MLP) that has been the most popular NN model in time series analysis. Since it is recently known that MLP suffers from bias/variance dilemma, two approaches are suggested in this study. The second approach adopts Cascade Correlation Network (CCN) that was suggested by Fahlman & Lebiere as an alternative to MLP. In the third approach, a time series is separated into two series using Noise Filtering Network (NFN) that utilizes autoassociative memory function of neural network. The forecasts in the decomposition analysis are the sum of two prediction values obtained from modeling each decomposed series, respectively. Among the three NN approaches, Decomposition Analysis shows the best forecasting performance on the M2 Competition Data, and is expected to be a promising tool in analyzing socio-economic time series data because it reduces the effect of noise or outliers that is an impediment to modeling the time series generating process.

  • PDF

An Efficient Implementation of Optimal Power Flow using the Alternating Direction Method (Alternating Direction Method를 이용한 최적조류계산의 분산처리)

  • Kim, Ho-Woong;Park, Marn-Kuen;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1424-1428
    • /
    • 1999
  • This paper presents a mathematical decomposition coordination method to implementing the distributed optimal power flow (OPF), wherein a regional decomposition technique is adopted to parallelize the OPT. The proposed approach is based on the Alternating Direction Method (ADM), a variant of the conventional Augmented Lagrangian approach, and makes it possible the independent regional AC-OPF for each control area while the global optimum for the entire system is assured. This paper is an extension of our previous work based on the auxiliary problem principle (APP). The proposed approach in this paper is a completely new one, however, in that ADM is based on the Proximal Point Algorithm which has long been recognized as one of the attractive methods for convex programming and min-max-convex-concave programming. The proposed method was demonstrated with IEEE 50-Bus system.

  • PDF

Blind signal separation for coprime planar arrays: An improved coupled trilinear decomposition method

  • Zhongyuan Que;Xiaofei Zhang;Benzhou Jin
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.138-149
    • /
    • 2023
  • In this study, the problem of blind signal separation for coprime planar arrays is investigated. For coprime planar arrays comprising two uniform rectangular subarrays, we link the signal separation to the tensor-based model called coupled canonical polyadic decomposition (CPD) and propose an improved coupled trilinear decomposition approach. The output data of coprime planar arrays are modeled as a coupled tensor set that can be further interpreted as a coupled CPD model, allowing a signal separation to be achieved using coupled trilinear alternating least squares (TALS). Furthermore, in the procedure of the coupled TALS, a Vandermonde structure enforcing approach is explicitly applied, which is shown to ensure fast convergence. The results of Monto Carlo simulations show that our proposed algorithm has the same separation accuracy as the basic coupled TALS but with a faster convergence speed.

A hybrid singular value decomposition and deep belief network approach to detect damages in plates

  • Jinshang Sun;Qizhe Lin;Hu Jiang;Jiawei Xiang
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.713-727
    • /
    • 2024
  • Damage detection in structures using the change of modal parameters (modal shapes and natural frequencies) has achieved satisfactory results. However, as modal shapes and natural frequencies alone may not provide enough information to accurately detect damages. Therefore, a hybrid singular value decomposition and deep belief network approach is developed to effectively identify damages in aluminum plate structures. Firstly, damage locations are determined using singular value decomposition (SVD) to reveal the singularities of measured displacement modal shapes. Secondly, using experimental modal analysis (EMA) to measure the natural frequencies of damaged aluminum plates as inputs, deep belief network (DBN) is employed to search damage severities from the damage evaluation database, which are calculated using finite element method (FEM). Both simulations and experimental investigations are performed to evaluate the performance of the presented hybrid method. Several damage cases in a simply supported aluminum plate show that the presented method is effective to identify multiple damages in aluminum plates with reasonable precision.