• Title/Summary/Keyword: Decomposition Rate Constant

Search Result 119, Processing Time 0.023 seconds

Effect of Crude Carbohydrate Content in Livestock Manure Compost on Organic Matter Decomposition Rate in Upland Soil (가축분 퇴비 조섬유 조성이 밭 토양에서 유기물 분해율에 미치는 영향)

  • Yun, Hong-Bae;Lee, Youn;Yu, Chang-Yeon;Lee, Sang-Min;Hyun, Byung-Keun;Lee, Yong-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.364-368
    • /
    • 2007
  • The objective of this study was to characterize organic mater decomposition with application of livestock manure compost in upland soil. Six different composts, which were chicken (CHM), pig (PIM), and cow (COM) manure compost added and chicken (CHMS), pig (PIMS), cow (COMS) manure compost with sawdust added, were prepared for this study. These composts have different composition of crude carbohydrate (hemicellulose, cellulose, and lignin). The buried-bag method was used to determine the rate of organic mater decomposition and the changes of crude carbohydrate content during 36 months in the field. In all treatment, hemicellulose content was sharply decreased within 8 months, but considerable amount of lignin was remained after 36 months. After 40 months, the rates of carbon decreasing were 81, 80, 72, 69, 67, and 64 % for CHM, PIM, COM, CHMS, PIMS, and COMS, respectively. The estimated equation of carbon decreasing rate (D), $D=aT^b$, was fit to the carbon decreasing rate vs. elapsed time (T) using a non-linear regression procedure. After 40 months, significant difference of carbon decreasing rate between observed and estimated was not found. The relationship between constant a, b and hemicellulose content in the compost was not observed in this experiment. The cellulose and lignin content in the compost were positively correlated to the constant b and negatively correlated to the constant a.

Studies on the Decomposition of Leaf Litter Containing Heavy Metals in Andong Serpentine Area, Korea I. Microcosm Experiment (사문암지대의 중금속 함유 낙엽의 분해에 관한 연구 I. Microcosm 실험)

  • Ryou, Sae-Han;Kim, Jeong-Myeong;Shim, Jae-Kuk
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.4
    • /
    • pp.353-362
    • /
    • 2009
  • This study attempted to compare the litter decomposition rate of Arundinella hirta and Miscanthus sinensis var. purpurascens which collected from serpentine soil acting potentially toxic concentration of heavy metals and non-serpentine soil by using the microcosm method for 192 days under constant humidity and $23^{\circ}C$. The contents of Ni, Fe, Mg and Cr in the serpentine and nonserpentine soil originated litter showed high differences between them. The litter samples from serpentine site have lower C/N than non-serpentine litter, but the soluble carbohydrate content was shown almost similar between two plant litter. The mass loss rates of leaf litter from serpentine area were slower than those from non-serpentine site. During the experimental period, the remained dry weight of A. hirta and M. sinensis var. purpurascens litter collected from serpentine site were 64.7%, 65.0% of initial dry weight and litter samples from non-serpentine site showed 54.2%, 50.7%, respectively. K and Na were leached rapidly at the initial decomposition periods, but Ca showed immobilization and other metal elements reserved at the decomposing litter for a long time. The decomposing A. hirta litter from non-serpentine soil showed higher values of $CO_2$ evolution, microbial biomass-C, and microbial biomass-N than those in serpentine soil originated litter acting nutrient stresses and exhibited rapid decay rate. The microbial biomass and microbial respiration of decaying litter were positively correlated with litter decomposition rate, and these relationships showed more rapid slope in non-serpentine soil originated litter than that in serpentine soil.

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.50-57
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

Anti-Oxidation Property of Oil-Soluble Zinc-dialkyldithiophosphate (ZnDTP의 산화방지기능에 관한 연구)

  • 김영환
    • Tribology and Lubricants
    • /
    • v.16 no.1
    • /
    • pp.22-26
    • /
    • 2000
  • In this paper, the fuction of Zinc-dialkyldithiophosphate (ZnDTP) as an oxidation ingibitor of mineral oils was investigated and compared with 2,6-Di-tert-Butyl-4-Methylphenol (DBMP). Oxidation tests were conducted using an oxygen absorption apparatus. ZnDTP showedanti-oxidation property, and length of induction period prolonged by increasing ZnDTP concentration. The anti-oxidation property of ZnDTP was simmilar to that with DBMP. The amount of hydroperoxide decomposition ability with ZnDTP was much greater than that with DBMP, But the rate constant of radical scavenging with ZnDTP was less than that with DBMP. The anti-oxidation property of ZnDTP seems to by both synergy effect of hydroperoxide decomposition ability and radical scavenging ability.

Effect of Synthetic Resin Container on the Stability of FAD Solution (합성수지 용기가 FAD 수용액의 안정성에 미치는 영향)

  • 이계주;유병설
    • YAKHAK HOEJI
    • /
    • v.23 no.3_4
    • /
    • pp.147-152
    • /
    • 1979
  • Experiments were carried out to investigate for the interaction between FAD solution and synthetic resin containers made of polyvinylchloride(PVC), polyethylene(PE), and polycarbonate(PC), and for the effect of glycyrrhizine or malic acid on stabilization of FAD in aqueous solution by accelerated stability analysis. Analysis of FAD was determined by means of spectrometer and by separating by paper chromatography and metal ions were detected by atomic absorption spectrophotometer, which were extracted from containers by means of Food and Additive Regulation Standard. The thermal decomposition of FAD in aqueous solution was pseudo first order reaction and it was inhibited by adding glycyrrhizine or malic into the solution. PVC, PE and PC containers accelerated the decomposition of FAD in solution. It is assumed that bivalent heavy metals in resin containers may catalize the hydrolysis of FAD. The metals detected from the containers were Ca, Zn, Cu, Fe, Pb and Cd. And the total amounts of detected metals from PVC were 6.2mcg/cm$^{2}$, PE, 5.5mcg/cm$^{2}$, and PC, 2.7mcg/cm$^{2}$ which were proportional to the rate constant of FAD decomposition in aqueous solution.

  • PDF

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

The Analysis of the temperature distribution in Carbon/Phenolic composite by thermal decomposition parameters (열분해 특성상수를 활용한 탄소/페놀릭 복합재료의 온도분포 해석)

  • Kim Yun-Chul;Park Young-Che
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.45-49
    • /
    • 2006
  • The thermal degradation of carbon fiber reinforced phenolic composites have been studied at high temperature by using thermogravimetry analysis (TGA). The aim is that ultimately it can be used to predict the service temperature during solid rocket firing for any level and type of mechanical loading and to recommend protection systems required. To simulate the high heating rate in firing condition, the modified thermal decomposition constant (1000 K/min) was used for FEM analysis. The temperature distribution and the thickness of thermal decomposition were estimated well and we could predict the thickness of thermal decomposition within ${\pm}1mm$.

  • PDF

Experimental Study on Air Decomposition By-Product Under Creepage Discharge Fault and Their Impact on Insulating Materials

  • Javed, Hassan;LI, Kang;Zhang, Guoqiang;Plesca, Adrian Traian
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2392-2401
    • /
    • 2018
  • Creepage discharge faults in air on solid insulating material play a vital role in degradation and ageing of material which ultimately leads to breakdown of power equipment. And electric discharge decompose air in to its by-products such as Ozone and $NO_x$ gases. By analyzing air decomposition gases is a potential method for fault diagnostic in air. In this paper, experimental research has been conducted to study the effect of creepage discharge on rate of generation of air decomposition by-products using different insulating materials such as RTV, epoxy and fiberglass laminated sheet. Moreover XRF analysis has been done to analyze creepage discharge effect on these insulating materials. All experiments have been done in an open air test cell under constant temperature and pressure conditions. While analysis has been made for low and high humidity conditions. The results show that the overall concentration of air decomposition by-products under creepage discharge in low humidity is 4% higher than concentration measured in high humidity. Based on this study a mathematical relationship is also proposed for the rate of generation of air decomposition by-products under creepage discharge fault. This study leads to indirect way for diagnostic of creepage discharge propagation in air.

Decomposition of Carbon Dioxide using $Zn_{x}Fe_{3-x}O_{4-{\delta}}$ (($Zn_{x}Fe_{3-x}O_{4-{\delta}}$를 이용한 이산화탄소의 분해)

  • Yang, Chun-Mo;Cho, Young-Koo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 2000
  • $Zn_{x}Fe_{3-x}O_{4}(0.00.<X<0.08)$ was synthesized by air oxidation method for the decomposition of carbon dioxide. We investigated the characteristics of catalyst, the form of methane by gas chromatograph after decomposition of carbon dioxide and kinetic parameter. $Zn_{x}Fe_{3-x}O_{4}(0.00.<X<0.08)$ was spinel type structure. The surface areas of catalysts($Zn_{x{Fe_{3-x}O_{4}(0.00.<X<0.08)$) were $15{\sim}27$ $m^{2}/g$. The shape of $Zn_{0.003}Fe_{2.997}O_{4}$ was sphere. The optimum temperature for the decomposition of carbon dioxide into carbon was $350^{\circ}C$. $Zn_{0.003}Fe_{2.997}O_{4}$ showed the 85% decomposition rate of carbon dioxide and the degree of reduction by hydrogen(${\delta}$) of $Zn_{0.003}Fe_{2.997}O_{4}$ was 0.32. At $350^{\circ}C$, the reaction rate constant and activation energy of $Zn_{0.003}Fe_{2.997}O_{3.68}$ for the decomposition of carbon dioxide into carbon were 3.10 $psi^{1-{\alpha}}/min$ and 0.98 kcal/mole respectively. After the carbon dioxide was decomposed, the carbon which was absorbed on the catalyst surface was reacted with hydrogen and it became methane.