• Title/Summary/Keyword: Decomposition Products

Search Result 377, Processing Time 0.027 seconds

Influence of Ca Reduction Process on the Properties of Nanocrystalline Nd-Fe-B Powders Prepared by a Thermochemical Process (열화학공정으로 제조된 나노결정형 Nd-Fe-B 분말의 특성에 미치는 Ca환원 공정의 영향)

  • Lee, Dae-Hoon;Jang, Tae-Suk;Yoo, J.-H.;Choi, C.-J.;Kim, B.-K.;Park, Byeong-Yeon
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.42-47
    • /
    • 2005
  • Nanocrystalline Nd-Fe-B powder was synthesized by a new thermochemical process that combined with past reduction-diffusion process and spray-dry process. In this process, Ca reduction process is vary important due to formation of hard magnetic$Nd_{2}Fe_{14}B$ phase from various oxides by Ca powder. Therefore, the final products are essentially affected a shape, size, and composition etc. of the Ca reduced powders. Ca reduction was performed to way that raw powders just mixed with Ca powder in proper ratio unlike to compress into compact. The powders after mixture-type Ca reduction mainly composited with $Nd_{2}Fe_{14}B$ phase even relativily low reaction temperature ($800^{\circ}C$) and all particle size of powder were distributed less than 1 ${\mu}m$ except for powder after Ca oxides as magnetic properties of powders after cake-type Ca reduction, with the consequence that high magnetic properties has been expected. The magnetic properties of powders prepared by mixture-type Ca ruduction, with the conseqence that high magnatic properties has been expected. The magnetic properties of powders prepared by mixture-type Ca reduction process showed $_iH_c$ = 5.9 kOe, $B_r$ = 5.5 kG, (BH)max = $Nd_{2}Fe_{14}B{\to}Nd_{2}Fe_{17}B$ decomposition by violent exothermic reaction during washing.

Synthesis of Methanol from Carbon Dioxide (I). Study on Cu / ZnO Catalyst System (이산화탄소에 의한 메탄올 합성 (제 1 보). Cu / ZnO 촉매계 연구)

  • Sung Yun Cho;Ki Won Jun;Dae Chul Park;Kyu Wan Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.558-567
    • /
    • 1989
  • The synthesis of methanol from carbon dioxide and hydrogen was studied for various compositions of Cu/ZnO catalyst system. Effect of the composition ratio of CuO and ZnO on the catalytic activity in the above reaction and the relationship between the activity and the characteristics of the catalysts were explained from the result of surface area measurements, SEM, XRD, and XPS. The major products of the reaction were methanol and carbon monoxide. The selectivity to methanol increased with increase of the copper oxide content in the catalyst up to CuO: ZnO = 30:70 weight ratio, and decreased rapidly when the content is above 70%. SEM and BET measurements, indicate that this point corresponds to the increasing point of the catalyst crystallite size and the decreasing point of the surface area. As to the Cu/Cu + Zn atomic ratio, the surface concentration of copper measured by XPS decreased remarkably when the copper oxide content in catalyst was higher than 50%. All the unreduced catalysts had almost same binding energy of Cu(2P3) level, but the binding energy for $Cu(2P^3)$ level of reduced catalysts was lowered than that of calcined catalysts. The surface copper species which was in the maximum amount when the CuO:ZnO composition in the catalyst was 30:70, existed as zero valent copper. This result agreed with the experimental result that the highest rate of methanol formation was observed when the CuO content in the catalyst was 30%. It was postulated that these reduced catalysts performed with a relatively strong basicity because the formation rate of acetone was higher than that of propylene in isopropanol decomposition as measured in a pulse type reactor.

  • PDF

Development of a Molecular Selection Marker for Bacillus licheniformis K12 (Bacillus licheniformis K12 균주 분자 선발 마커 개발)

  • Young Jin Kim;Sam Woong Kim;Tae Wok Lee;Won-Jae Chi;Woo Young Bang;Ki Hwan Moon;Tae Wan Kim;Kyu Ho Bang;Sang Wan Gal
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.808-819
    • /
    • 2023
  • This study was conducted to develop a selection marker for the identification of the Bacillus licheniformis K12 strain in microbial communities. The strain not only demonstrates good growth at moderate temperatures but also contains enzymes that catalyze the decomposition of various polymer materials, such as proteases, amylases, cellulases, lipases, and xylanases. To identify molecular markers appropriate for use in a microbial community, a search was conducted to identify variable gene regions that show considerable genetic mutations, such as recombinase, integration, and transposase sites, as well as phase-related genes. As a result, five areas were identified that have potential as selection markers. The candidate markers were two recombinase sites (BLK1 and BLK2), two integration sites (BLK3 and BLK4), and one phase-related site (BLK5). A PCR analysis performed with different Bacillus species (e.g., B. licheniformis, Bacillus velezensis, Bacillus subtilis, and Bacillus cereus) confirmed that PCR products appeared at specific locations in B. licheniformis: BLK1 in recombinase, BLK2 in recombinase family protein, and BLK3 and BLK4 as site-specific integrations. In addition, BLK1 and BLK3 were identified as good candidate markers via a PCR analysis performed on subspecies of standard B. licheniformis strains. Therefore, the findings suggest that BLK1 can be used as a selection marker for B. licheniformis species and subspecies in the microbiome.

A Study on the analysis method and composition characteristics of organic materials in the pottery excavated at the palace site in Yongjangseong Fortress, Jindo (진도 용장성 왕궁지 출토 도기호 내부 유기물의 분석법과 성분 특성 연구)

  • YUN Eunyoung;YU Jia;KIM Kyuho
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.158-171
    • /
    • 2023
  • Pottery filled with organic materials was excavated from the G-2 building site of Yongjangseong Fortress, Jingo, a relic of the Goryeo Dynasty. In this study, the characteristics of organic material were confirmed by a scientific analysis of organic material in pottery found at the palace in Yongjangseong, Jindo. In addition, it was intended to review the analysis method to identify the natural resin and to secure characteristic components(biomarkers) for each natural resin and use them as basic data in the future. The organic materials in the pottery were analyzed using attenuated total reflectance Fourier-transformed infrared spectroscopy(ATR-FTIR) and gas chromatography mass spectrometry(GC-MS). The infrared spectral characteristics were estimated to be natural resin, and biomarkers of organic materials were identified as sesquiterpene-based compounds(C15H24, MW 204) and derivatives. The lacquer(T.vemicifluum) is composed mainly of alkenes, alkanes, and catechol. Pine resin(P.densiflora), on the other hand, is primarily composed of diterpenoid(abietic acid, pimaric acid) and Whangchil(yellow lacquer) is identified to have sesquiterpenes(such as selinene, muurolene, calamenene) as its main components. So, the organic material in the pottery can be identified as Whangchil by comparing their compounds with modern resin materials from Dendropanax. morbifera that correspond with the results. Whangchil, which is exuded from the Dendropanax. morbifera, has been used as a natural coating materials since ancient times, and it has been confirmed that the characteristic components are well preserved even 700 years later. It can be assumed that the interior Whangchil was stored not for use as a coating, but rather for ritual purposes when the building was constructed, because the pottery was found near the cornerstone. Furthermore, based on simplified sample preparation using pyrolysis-gas chromatography mass spectrometry(Py-GC-MS), the thermal decomposition products were found to be similar to the characteristic components, suggesting that this method can be applied to the identification of natural resins used in historic artifacts.

Numerical Study on Thermochemical Conversion of Non-Condensable Pyrolysis Gas of PP and PE Using 0D Reaction Model (0D 반응 모델을 활용한 PP와 PE의 비응축성 열분해 기체의 열화학적 전환에 대한 수치해석 연구)

  • Eunji Lee;Won Yang;Uendo Lee;Youngjae Lee
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.37-46
    • /
    • 2024
  • Environmental problems caused by plastic waste have been continuously growing around the world, and plastic waste is increasing even faster after COVID-19. In particular, PP and PE account for more than half of all plastic production, and the amount of waste from these two materials is at a serious level. As a result, researchers are searching for an alternative method to plastic recycling, and plastic pyrolysis is one such alternative. In this paper, a numerical study was conducted on the pyrolysis behavior of non-condensable gas to predict the chemical reaction behavior of the pyrolysis gas. Based on gas products estimated from preceding literature, the behavior of non-condensable gas was analyzed according to temperature and residence time. Numerical analysis showed that as the temperature and residence time increased, the production of H2 and heavy hydrocarbons increased through the conversion of the non-condensable gas, and at the same time, the CH4 and C6H6 species decreased by participating in the reaction. In addition, analysis of the production rate showed that the decomposition reaction of C2H4 was the dominant reaction for H2 generation. Also, it was found that more H2 was produced by PE with higher C2H4 contents. As a future work, an experiment is needed to confirm how to increase the conversion rate of H2 and carbon in plastics through the various operating conditions derived from this study's numerical analysis results.

Studies on the effect of phthalimido methyl-O,O-dimethyl-phosphorodithioate (Imidan) and its possible metabolites on the growth of rice plant (Phthalimido methyl-O,O-dimethyl phosphorodithioate (Imidan)과 그의 대사물질(代謝物質)이 수도(水稻) 생육(生育)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Lee, Sung-Hwan;Lee, Dong-Suk;Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.7
    • /
    • pp.105-117
    • /
    • 1966
  • This experiment was conducted to investigate the effet of phthalimido-methyl-O,O-dimethyl-phosphorodithioate (Imidan) known as an acaricide and its possible metabolic products on the growth of plant, when sprayed on the leaves of rice plant. The results are summarized as follows. 1) Possible metabolic products of Imidan, the following compounds were synthesized or recrystallized for the present experiment a) N-Hydroxymethyl phthalimidem b) Phthalimide c) Phthalamidic acid d) Phthalic acid e) Anthranilic acid f) p-Amino benzoic acid g) p-Hydroxy benzoic acid h) Benzoic acid 2) Among the above materials, a), c), d), e), and Imidan were dissolved in a buffer solution respectively to be 10 and 20 p.p.m. and tested with the wheat coleoptile straight growth method. According to the results, Imidan inhibited the growth of coleoptile in both 10 and 20 p.p.m., whereas the others showed much better growth than the control, especially phthalamidic acid in 10 p.p.m. It appears that Imidan itself inhibits the coleoptile growth, whereas the metabolites derived from Imidan through various metabolisms, including hydrolysis in plant tissues show growth-regulating activity. (refer: Table 1, Fig. 1) 3) 20, 100 and 200 p.p.m. solutions of Imidall emulsion in xylene f·ere prepared. The lengths of shoot and root of rice seeds germinated on the re-respective media were measured after 12 days. The data showed that root was much more elongated in Imidan 20 p.p.m., whereas shoot in Imidan 100 p.p.m., respectively, than in the xylene control. An interesting finding was that xylene used as solvent had a tendency to inhibit seriously the root growth of rice seed. (refer: Table 2,5). 4) The emulsions of concentrations in 10, 25, 50 and 100 p.p.m's of control, Imidan, N-hydroxy methyl phthalimide, anthranilic acid, and phthalmide, respectively, were sprayed twice on the rice plant on pot. After a certain period of time lengths of rice culms were measured, showing that plots treated with Imidan and N-hydroxy methyl phthalimide exhibited much more growth than those of control and the others. 5) Loaves and stems of rice plant were sampled and extracted with dried acetone at the intervals of 3-, 5-, 7-, and 14 days after treated with Imidan 250 p.p.m. emulsion. This sample extracted with acetone was purified by means of prechromatographic purification method with acetonitrile and paperchromatographed to detect the following metabolic products. Imidan (Rf: 0.97-0,98), N-hydroxy-methyl phthalimide (Rf: 0.87) phthalimide (Rf: 0.86-0.87), phthalamidic acid (Rf: 0.13-0.14), phthalic acid (Rf: 0.02-0.03), benzoic acid (Rf: 0.42-0.43), p-amino benzoic acid or p-hydroxy benzoic acid (Rf: 0.08-0.09), and unidentified compounds (Rf: 0.73, 0.59, 0.33, 0.23. 0.07). In addition, in the early stages, such as 3- and 5 days nonhydrolyzed Imidan and its first hydrolytic product, N-hydroxymethyl phthalimide were detected in relatively large amounts, whereas in the last stages of 7- and 14 days due to further decomposition, the afore-mentioned two materials were reduced in the amount and p-hthalic, phthalamidic, benzoic, and p-Hydroxy benzoic, or p-Amino benzoic acids were detected in a considerably large amount. It is, therefore, believed that most of Imidan applied to the leaves of rice plant may be decomposed within almost 14 days. In the light of above observations it is considered that Imidan itself is not involved in plant growth regulating activity, whereas various phthaloyl derivatives produced in the course of metabolism (namelr, enzymic action) in plant tissues may have such effect.

  • PDF

Studies on nutrient sources, fermentation and harmful organisms of the synthetic compost affecting yield of Agaricus bisporus (Lange) Sing (양송이 수량(收量)에 미치는 합성퇴비배지(合成堆肥培地)의 영양원(營養源), 발효(醱酵) 및 유해생물(有害生物)에 관((關)한 연구(硏究))

  • Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.7 no.1
    • /
    • pp.13-73
    • /
    • 1979
  • These studies were conducted to investigate nutrient sources and supplementary materials of synthetic compost media for Agaricus bisporus culture. Investigation were carried out to establish the optimum composition for compost of Agaricus bisporus methods of out-door fermentation and peakheating with rice straw as the main substrate of the media. The incidence and flora of harmful organisms in rice straw compost and their control were also studied. 1. When rice straw was used as the main substrate in synthetic compost as a carbon source. yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw, and the total nitrogen content was high in rice straw compost. 2. Since the morphological and physico-chemical nature of Japonica and Indica types of rice straw are greatly dissimilar. there were apparent differences in the process of compost fermentation. Fermentation of Indica type straw proceeded more rapidly with a shortening the compost period, reducing the water supply, and required adding of supplementary materials for producing stable physical conditions. 3. Use of barley straw compost resulted in a smaller crop compared with rice straw. but when a 50%, barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. 4. There were extremely high positive correlations between yield of Agaricus bisporus and the total nitrogen, organic nitrogen, amino acids, amides and amino sugar nitrogen content of compost. The mycerial growth and fruit body formation were severely inhibited by ammonium nitrogen. 5. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. 6. The supplementation of organic nutrient activated compost fermentation and increased yield of Agaricus bisporus. The best sources of organic nutrients were: perilla meal, sesame meal, wheat bran and poultry manure, etc. 7. Soybean meal, tobacco powder and glutamic acid fermentation by-products which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. B. When gypsum and zeolite were added to rice straw. physical deterioration of compost due to excess moisture and caramelization was observed. The Indica type of straw was more remarkable in increase of yield of Agricus bisporus by addition of supplementing materials than Japonica straw. 9. For preparing rice straw compost, the best mixture was prepared by 10% poultry manure, 5% perilla meal, 1. 2 to 1. 5% urea and 1% gypsum. At spring cropping, it was good to add rice bran to accelerate heat generation of the compost heap. 10. There was significantly high positive correlation (r=0.97) between accumulated temperature and the decomposition degree of compost during outdoor composting. The yield was highest at accumulated temperatures between 900 and $1,000^{\circ}C$. 11. Prolonging the composting period brought about an increase in decomposition degree and total nitrogen content, but a decrease in ammonium nitrogen. In the spring the suitable period of composting was 20 to 25 days. and about 15 days in autumn. For those periods, the degree of decomposition was 19 to 24%. 12. Compactness of wet compost at filling caused an increase in the residual ammonium nitrogen. methane and organic acid during peak heating. There was negative correlation between methane content and yield (r=0.76)and the same was true between volatile organic acid and yield (r=0.73). 13. In compost with a moisture content range between 69 to 80% at filling. the higher the moisture content, the lower the yield (r=0.78). This result was attributed to a reduction in the porosity of compost at filling the beds. The optimum porosity for good fermentation was between 41 and 53%. 14. Peak heating of the compost was essential for the prevention of harmful microorganisms and insect pests. and for the removal of excess ammonia. It was necessary to continue fer mentatiion for four days after peak heating. 15. Ten species of fungi which are harmful or competitive to Agaricus bisporus were identified from the rice compost, including Diehliomyces microsporus, Trichoderma sp. and Stysanus stemoites. The frequency of occurrance was notably high with serious damage to Agaricus bisporus. 16. Diehliomyces microsporus could be controlled by temperature adjustment of the growing room and by fumigating the compost and the house with Basamid and Vapam. Trichoderma was prevented by the use of Bavistin and Benomyl. 17. Four species of nematodes and five species of mites occured in compost during out-door composting. These orgnanisms could be controlled through peakheating compost for 6 hours at $60^{\circ}C$.

  • PDF