• Title/Summary/Keyword: Decommissioning activities

Search Result 53, Processing Time 0.028 seconds

Radiochemical Analysis of Filters Used During the Decommissioning of Research Reactors for Disposal

  • Kyungwon Suh;Jung Bo Yoo;Kwang-Soon Choi;Gi Yong Kim;Simon Oh;Kanghyun Yoo;Kwang Eun Lee;Shinkyoung Lee;Young Sang Lee;Hyeju Lee;Junhyuck Kim;Kyunghun Jung;Sora Choi;Tae-Hong Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.489-500
    • /
    • 2022
  • The decommissioning of nuclear facilities produces various types of radiologically contaminated waste. In addition, dismantlement activities, including cutting, packing, and clean-up at the facility site, result in secondary radioactive waste such as filters, resin, plastic, and clothing. Determining of the radionuclide content of this waste is an important step for the determination of a suitable management strategy including classification and disposal. In this work, we radiochemically characterized the radionuclide activities of filters used during the decommissioning of Korea Research Reactors (KRRs) 1 and 2. The results indicate that the filter samples contained mainly 3H (500-3,600 Bq·g-1), 14C (7.5-29 Bq·g-1), 55Fe (1.1- 7.1 Bq·g-1), 59Ni (0.60-1.0 Bq·g-1), 60Co (0.74-70 Bq·g-1), 63Ni (0.60-94 Bq·g-1), 90Sr (0.25-5.0 Bq·g-1), 137Cs (0.64-8.7 Bq·g-1), and 152Eu (0.19-2.9) Bq·g-1. In addition, the gross alpha radioactivity of the samples was measured to be between 0.32-1.1 Bq·g-1. The radionuclide concentrations were below the concentration limit stated in the low- and intermediatelevel waste acceptance criteria of the Nuclear Safety and Security Commission, and used for the disposal of the KRRs waste drums to a repository site.

Development of Risk Breakdown Structure of Nuclear Power Plant Decommissioning Project: Focusing on Structural Damage / Work Process Risks (원전 차폐 콘크리트 구조물 제염해체공사 리스크 분류체계 구축: 구조적 / 작업 리스크를 중심으로)

  • Kim, Byeol;Lee, Joo-Sung;Ahn, Yong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.38-45
    • /
    • 2018
  • The purpose of this study is to deduct the structural damage / work process risks factors which can be occurred during the decommissioning in the NPP containment concrete structure. To achieve these purpose, risk profile specified in the construction industry is analyzed, and the work process of NPP decommissioning and the construction project were matched based on the similarity of each works. Accordingly, human and physical risk factors are classified. Finally, the risk associated with the building structure and work process was classified as per their process activities, and risk typology explaining the disaster which put the structure, equipments, machine and workers in serious danger was developed.

Spatial Distributions of $^3H$ and $^{14}C$ in the Shielding Concrete of KRR-2 (연구로 2호기 수조 콘크리트의 $^3H$$^{14}C$ 공간분포)

  • Hong, Sang-Bum;Kim, Hee-Reyoung;Chung, Kun-Ho;Kang, Mun-Ja;Jeong, Gyeong-Hwan;Chung, Un-Soo;Park, Jin-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.4
    • /
    • pp.329-334
    • /
    • 2006
  • The depth distributions of total $^3H$ and $^{14}C$ activities were characterized for the activated shielding concrete from a decommissioning of KRR-2 using the commercially available tube furnace and a liquid scintillation counter. The correlation of measurement results between $^3H,\;^{14}C$ and gammer emitter was evaluated to apply for estimating radionuclide inventory of the concrete waste generated from decommissioning KRR-2. The detection limits for $^3H$ and $^{14}C$ are 0.048 and 0.028 Bq/g respectively. The specific activities of the $^3H$ and $^{14}C$ tend to decrease exponentially as the depth of the concrete becomes deeper from the surface. In addition, the $^3H$ and $^{14}C$ activities were in good correlation with the $^{60}CO$ activities analysed for the shielding concrete of KRR-2.

  • PDF

RAMS of Railway Control System (열차제어시스템의 신뢰성, 가용성, 유지보수성, 안전성)

  • Kim, Jong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.391-394
    • /
    • 2003
  • IEC 62278, a standard for Railway applications of RAMS, was established in 2002. This IEC standard is based on CENELEC EN 50126 and covered overall railway fields. Activities that had to be performed from concept to decommissioning and disposal of railway system life-cycle, were contained in this standard. On the flow of internationalization, our Railway Authorities and railway support industry need to understand and apply this standard to railway fields. In this paper Railway RAMS in IEC 62278 is introduced.

  • PDF

Design of a virtual dismantling facility for research reactor (연구로 가상 해체 시설 설계)

  • Park Hui-Seong;Kim Seong-Gyun;Lee Geun-U;O Won-Jin;Park Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.47-55
    • /
    • 2005
  • A design of a dismantling mock-up system have been established based on the result that analyzed a characteristic of modules which need to design a virtual dismantling facility. A unit program composed of a various module such as a decommissioning database system. 3D dosimetric mapping that represents a distribution of a radionuclide contamination, a evaluation module for a dismantling schedule and cost A research of software architecture was carried out in order to Integrate these components that have been independently operated. The result was established an architecture that consis of a visualization module which could be visualized D&D activities and a simulation module which tan he evaluated a dismantling schedule and decommissioning cost.

  • PDF

Flow Characteristics Analysis for the Chemical Decontamination of the Kori-1 Nuclear Power Plant

  • Cho, Seo-Yeon;Kim, ByongSup;Bang, Youngsuk;Kim, KeonYeop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • Chemical decontamination of primary systems in a nuclear power plant (NPP) prior to commencing the main decommissioning activities is required to reduce radiation exposure during its process. The entire process is repeated until the desired decontamination factor is obtained. To achieve improved decontamination factors over a shorter time with fewer cycles, the appropriate flow characteristics are required. In addition, to prepare an operating procedure that is adaptable to various conditions and situations, the transient analysis results would be required for operator action and system impact assessment. In this study, the flow characteristics in the steady-state and transient conditions for the chemical decontamination operations of the Kori-1 NPP were analyzed and compared via the MARS-KS code simulation. Loss of residual heat removal (RHR) and steam generator tube rupture (SGTR) simulations were conducted for the postulated abnormal events. Loss of RHR results showed the reactor coolant system (RCS) temperature increase, which can damage the reactor coolant pump (RCP)s by its cavitation. The SGTR results indicated a void formation in the RCS interior by the decrease in pressurizer (PZR) pressure, which can cause surface exposure and tripping of the RCPs unless proper actions are taken before the required pressure limit is achieved.