• Title/Summary/Keyword: Decommissioning Plan

Search Result 45, Processing Time 0.017 seconds

Study on Chemical Decontamination Process Based on Permanganic Acid-Oxalic Acid to Remove Oxide Layer Deposited in Primary System of Nuclear Power Plant (계통 내 침적된 산화막 제거를 위한 과망간산/옥살산 기반의 화학제염 공정연구)

  • Kim, Chorong;Kim, Haksoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.15-28
    • /
    • 2019
  • In accordance with the decommissioning plan for the Kori Unit 1 NPP, the reactor coolant system will be chemically decontaminated as soon as possible after permanent shutdown. This study developed the chemical decontamination process though the development project of decontamination technology of reactor coolant system and dismantled equipment for NPP decommissioning, which has been carried out since 2014. In this study, Oxidation/reduction process was conducted using system decontamination process development equipment of lab scale and was divided into unit and continuous processes. The optimal process time was derived from the unit process, and decontamination agent and the number of process were derived through the continuous processes. Through the unit process, the oxidation process took 5 hours and the reduction process took 4 hours. As optimum decontamination agent, the oxidizing agent was $200mg{\cdot}L^{-1}$ Permanganic acid + $200mg{\cdot}L^{-1}$ Nitric acid and the reducing agent was $2000mg{\cdot}L^{-1}$ Oxalic acid. In the case of the number of processes, all oxide films were removed during the two-cycle chemical decontamination process of STS304 and SA508. In the case of Alloy600, all oxide films were removed when chemical decontamination was performed for three cycles or more.

Inventory Estimation of 36Cl and 41Ca in Concrete of Kori Unit 1 (고리 1호기의 콘크리트 내 36Cl 및 41Ca의 방사화재고량 평가)

  • Jang, Mee;Lim, Jong Myoung;Kim, Hyun Chul;Kim, Chang-Jong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.121-126
    • /
    • 2019
  • The radionuclide inventory prediction of a nuclear power plant can help establish decommissioning plan by providing information of radiation environment. Accumulated radionuclides in reactors and related facilities after reactor shutdown can be divided into neutron activated materials and contaminated materials. Among the neutron activated radionuclides, $^{36}Cl$ and $^{41}Ca$ are important from the viewpoint of disposal because of its long half-life and physiochemical characteristics. In this research, we calculated the radionuclides of $^{36}Cl$ and $^{41}Ca$ in bioshielding concrete by estimating the neutron flux and cross section using the MCNPX. And we evaluated the inventories of $^{36}Cl$ and $^{41}Ca$ using the activation calculation code ORIGEN2.

Estimation of ship operational efficiency from AIS data using big data technology

  • Kim, Seong-Hoon;Roh, Myung-Il;Oh, Min-Jae;Park, Sung-Woo;Kim, In-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.440-454
    • /
    • 2020
  • To prevent pollution from ships, the Energy Efficiency Design Index (EEDI) is a mandatory guideline for all new ships. The Ship Energy Efficiency Management Plan (SEEMP) has also been applied by MARPOL to all existing ships. SEEMP provides the Energy Efficiency Operational Indicator (EEOI) for monitoring the operational efficiency of a ship. By monitoring the EEOI, the shipowner or operator can establish strategic plans, such as routing, hull cleaning, decommissioning, new building, etc. The key parameter in calculating EEOI is Fuel Oil Consumption (FOC). It can be measured on board while a ship is operating. This means that only the shipowner or operator can calculate the EEOI of their own ships. If the EEOI can be calculated without the actual FOC, however, then the other stakeholders, such as the shipbuilding company and Class, or others who don't have the measured FOC, can check how efficiently their ships are operating compared to other ships. In this study, we propose a method to estimate the EEOI without requiring the actual FOC. The Automatic Identification System (AIS) data, ship static data, and environment data that can be publicly obtained are used to calculate the EEOI. Since the public data are of large capacity, big data technologies, specifically Hadoop and Spark, are used. We verify the proposed method using actual data, and the result shows that the proposed method can estimate EEOI from public data without actual FOC.

Analysis on the International Trends in Safe Management of Very Low Level Waste Based upon Graded Approach and Their Implications (차등접근법에 근거한 극저준위폐기물의 안전관리 국제동향 및 시사점에 대한 고찰)

  • Cheong, Jae-Hak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.49-62
    • /
    • 2011
  • Recently, International Atomic Energy Agency and major leading countries in radioactive waste management tend to subdivide the categories of radioactive waste based upon risk-graded approach. In this context, the category of very low level waste has been newly introduced, or optimized management options for this kind of waste have been pursued in many countries. The application of engineered surface landfill type facilities dedicated to dispose of very low level waste has been gradually expanded, and it was analyzed that their design concept of isolation has been much advanced than those of the old fashioned surface trench-type disposal facilities for low and intermediate level waste, which were usually constructed in 1960's. In addition, the management options for very low level waste in major leading countries are varied depending upon and interfaced with the affecting factors such as: national framework for clearance, legal and practical availability of low and intermediate level waste repository and/or non-nuclear waste landfill, public acceptance toward alternative waste management options, and so forth. In this regard, it was concluded that optimized long-term management options for very low level waste in Korea should be also established in a timely manner through comprehensive review and discussions, in preparation of decommissioning of large nuclear facilities in the future, and be implemented in a systematic manner under the framework of national policy and management plan for radioactive waste management.

The Optimal Energy Mix in South Korea's Electricity Sector for Low Carbon Energy Transition in 2030: In Consideration of INDC and Sequential Shutdown of Decrepit Nuclear Power Plants (저탄소 에너지 전환을 위한 2030년 최적전력구성비: 노후 원전 단계적 폐쇄와 INDC를 고려한 시나리오)

  • Kim, Dongyoon;Hwang, Minsup
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.479-494
    • /
    • 2017
  • After Fukushima incident, negative sentiment towards nuclear power has led to transition in policies that reduce the dependency on nuclear power in some countries. President Moon of Republic of Korea also announced a national plan of decommissioning retired nuclear power plants stage by stage. Therefore, nuclear power that once was considered the critical solution to energy security and climate change is now a limited option. This study aims to find an optimal energy mix in Korea's electricity system from 2016 through 2030 to combat climate change through energy transition with minimum cost. The study is divided into two different scenarios; energy transition and nuclear sustenance, to compare the total costs of the systems. Both scenarios show that electricity generated by wind technology increases from 2018 whereas that of photovoltaic(PV) increases from 2021. However, the total cost of the energy transition scenario was USD 4.7 billion more expensive than the nuclear sustenance scenario.