• Title/Summary/Keyword: Decommissioning NPP

Search Result 59, Processing Time 0.019 seconds

A Suggestion of Contingency Guidelines According to ISDC Based on Overseas Contingency Data

  • Minhee Kim;Chang-Lak Kim;Sanghwa Shin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.541-550
    • /
    • 2022
  • When decommissioning nuclear power plant (NPP), the first task performed is cost estimation. This is an important task in terms of securing adequate decommissioning funds and managing the schedule. Therefore, many countries and institutions are conducting continuous research and also developing and using many programs for cost estimation. However, the cost estimated for decommissioning an NPP typically differs from the actual cost incurred in its decommissioning. This is caused by insufficient experience in decommissioning NPPs or lack of decommissioning cost data. This uncertainty in cost estimation can be in general compensated for by applying a contingency. However, reflecting an appropriate standard for the contingency is also difficult. Therefore, in this study, data analysis was conducted based on the contingency guideline suggested by each institution and the actual cost of decommissioning the NPP. Subsequently, TLG Service, Inc.'s process, which recently suggested specific decommissioning costs, was matched with ISDC (International Structure for Decommissioning Costing)'s work breakdown structure (WBS). Based on the matching result, the guideline for applying the contingency for ISDC's WBS Level 1 were presented. This study will be helpful in cost estimation by applying appropriate contingency guidelines in countries or institutions that have no experience in decommissioning NPPs.

A Study on the Applicability for Primary System Decontamination through Analysis on NPP Decommission Technology and International Experience (원전 제염기술 및 해외경험 분석을 통한 1차 계통 제염 적용 연구)

  • Song, Jong Soon;Jung, Min Young;Lee, Sang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.45-55
    • /
    • 2016
  • Decontamination is one of the most important technologies for the decommissioning of NPP. The purpose of decontamination is to reduce the Risk of exposure of the decommissioning workers, and to recycle parts of the plant components. Currently, there is a lack of data on the efficiency of the decontamination technologies for decommissioning. In most cases, the local radiation level can be lowered below a regulatory limitation by decontamination. Therefore, more efficient decontamination technology must be continuously developed. This work describes the practical experiences in the United States and the European countries for NPP decommissioning using these decontamination technologies. When the decommissioning of domestic nuclear power plant is planned and implemented, this work will be helpful as a reference of previous cases.

Development of the draft guidelines of the decommissioning plan for a nuclear power plant in Korea (국내 원자로시설 해체계획서 세부 작성지침(안) 개발)

  • Lee, Jungmin;Moon, Joohyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.213-227
    • /
    • 2013
  • It is essential to prepare the decommissioning plan for a nuclear power plant (NPP) for the safe decommissioning of the NPP, minimization of the generation of decommissioning wastes, and protection of human beings and environment. Although Kori unit 1 and Wolsong unit 1 will be destined to their decommissioning in Korea in the near future. there is no provisons about preparing the decommissioning plan. In this paper, therefore, the draft guidelines of the decommissioning plan for a NPP were developed by considering the domestic situation, based on the comparative analyses of the regulatory guidelines of the decommissioning plan in U.S., U.K. and France. The draft guidelines are expected to play an important role to modify the domestic laws and regulations on the decommissioning of the NPP, and to give a license holder in charge of decommissioning the detailed instructions for preparing it in advance.

Preliminary assessment of derived concentration guideline level (DCGL) for a hypothetical contaminated site planned for Ninh Thuan 1 nuclear power plant project in Vietnam by using RESRAD-ONSITE code

  • Bui Thi Hoa;Yongheum Jo;Jun-Yeop Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2274-2281
    • /
    • 2024
  • RESRAD-ONSITE v7.2 code is used to assess the radiation effects on a farmer resident located in a hypothetical contaminated site planned for the first nuclear power plant project in Vietnam, namely Ninh Thuan 1, after decommissioning. Derived concentration guideline levels are preliminarily calculated for 17 radionuclides that are assumed to remain on a contaminated surface soil with an initial concentration of 1 pCi/g in the protected area of NPP site. For a reliable estimation, the site-specific conditions regarding the geological, hydrological, climate, and occupancy data gathered from the Feasibility Study Report (FSR) and relevant literatures for the Ninh Thuan 1 NPP site is employed as input parameters. The calculation results indicate that the peak of total exposure dose is estimated to be ca. 0.191 mSv/yr at the time of decommissioning, and then decrease over time. Furthermore, the protected site is assessed to be released at ca. 6.71 years after decommissioning under the regulation on radiation protection in Vietnam. Through this study, a radiation exposure model for residents living near the Ninh Thuan 1 NPP is preliminarily established by using the RESRAD-ONSITE code, which are expected to be useful for future implementation of the Ninh Thuan 1 NPP project in Vietnam.

Transport Risk Assessment for On-Road/Sea Transport of Decommissioning Waste of Kori Unit 1

  • Woo Yong Kim;Hyun Woo Song;Jisoo Yoon;Moon Oh Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.255-269
    • /
    • 2023
  • Compared to operational wastes, nuclear power plant (NPP) decommissioning wastes are generated in larger quantities within a short time and include diverse types with a wider range of radiation characteristics. Currently used 200 L drums and IP-2 type transport containers are inefficient and restrictive in packaging and transporting decommissioning wastes. Therefore, new packaging and transport containers with greater size, loading weight, and shielding performance have been developed. When transporting radioactive materials, radiological safety should be assessed by reflecting parameters such as the type and quantity of the package, transport route, and transport environment. Thus far, safety evaluations of radioactive waste transport have mainly targeted operational wastes, that have less radioactivity and a smaller amount per transport than decommissioning wastes. Therefore, in this study, the possible radiation effects during the transport from NPP to disposal facilities were evaluated to reflect the characteristics of the newly developed containers and decommissioning wastes. According to the evaluation results, the exposure dose to transport workers, handling workers, and the public was lower than the domestic regulatory limit. In addition, all exposure dose results were confirmed, through sensitivity analysis, to satisfy the evaluation criteria even under circumstances when radioactive materials were released 100% from the container.

Radiological Impact on Decommissioning Workers of Operating Multi-unit NPP (다수호기 원전 운영에 따른 원전 해체 작업자에 대한 방사선학적 영향)

  • Lee, Eun-hee;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.107-120
    • /
    • 2019
  • The decommissioning of one nuclear power plant in a multi-unit nuclear power plant (multi-unit NPP) site may pose radiation exposure risk to decommissioning workers. Thus, it is essentially required to evaluate the exposure dose of decommissioning workers of operating multi-unit NPPs nearby. The ENDOS program is a dose evaluation code developed by the Korea Atomic Energy Research Institute (KAERI). As two sub-programs of ENDOS, ENDOS-ATM to anticipate atmospheric transport and ENDOS-G to calculate exposure dose by gaseous radioactive effluents are used in this study. As a result, the annual maximum individual dose for decommissioning workers is estimated to be $2.31{\times}10^{-3}mSv{\cdot}y^{-1}$, which is insignificant compared with the effective dose limit of $1mSv{\cdot}y^{-1}$ for the public. Although it is revealed that the exposure dose of operating multi-unit NPPs does not result in a significant impact on decommissioning workers, closer examination of the effect of additional exposure due to actual demolition work is required. The calculation method of this study is expected to be utilized in the future for planned decommissioning projects in Korea. Because domestic NPPs are located in multi-unit sites, similar situations may occur.

Review of the Acceptance Criteria of Very Low Level Radioactive Waste for the Disposal of Decommissioning Waste (극저준위 해체폐기물 처분을 위한 방사성폐기물 인수기준 분석)

  • Kim, Beomin;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.165-169
    • /
    • 2014
  • In order to use the nuclear energy as the sustainable energy source, the safe and efficient management of radioactive wastes generated from the nuclear fuel cycle including NPP decommissioning is one of the most important factors. The establishment of acceptance criteria for very low level radioactive wastes generated from decommissioning of nuclear power plant in a large quantity is seemed to play a key role for developing a radioactive wastes disposal strategy as well as NPP decommissioning strategy. In this thesis, we want to review the acceptance criteria of low-and-intermediate-level radioactive wastes in this country through the analysis of other country's acceptance criteria.

Decommissioning Cost Estimation of Kori Unit 1 Using a Multi-Regression Analysis Model (회귀 분석 모델을 이용한 고리 1호기 해체 비용 추정)

  • Joo, Han Young;Kim, Jae Wook;Jeong, So Yun;Moon, Joo Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.247-260
    • /
    • 2020
  • A multi-regression model was developed to estimate the decommissioning cost for Kori unit 1 using foreign nuclear power plant (NPP) decommissioning cost data. First, the decommissioning cost data were collected for 13 boiling water reactors and 16 pressurized water reactors and converted into the values as of November 2019. Then, for the regression model, the decommissioning cost was chosen as the dependent variable, and two variables were selected as independent variables: a contamination factor that was designed to reflect the operational characteristics of the decommissioned NPP and the decommissioning period. A statistical package in the R language was used to derive the regression model. Finally, the regression model was applied to estimate the decommissioning cost for Kori unit 1. The estimated decommissioning cost for Kori unit 1 was 663.40~928.32 million US dollars (782,812~1,095,418 million Korean won).

Parametric Study for Structural Reinforcement Methods of Disposal Container for NPP Decommissioning Radioactive Waste

  • Hyungoo Kang;Hoseog Dho;Jongmin Lim;Yeseul Cho;Chunhyung Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.329-345
    • /
    • 2023
  • This paper described a method for analyzing the structural performance of a metal container used for disposing radioactive waste generated during the decommissioning of a nuclear power plant, and numerical analysis results of a method for reinforcing the container. The containers to be analyzed were those that can be used in near-surface and landfill disposal facilities scheduled to be operated at the Gyeongju radioactive waste disposal facility. Structural reinforcement of the container was performed by lattice reinforcement, column reinforcement, and bottom plate reinforcement. Accordingly, a total of 14 reinforcement cases were modeled. The external force causing damage to the container was set equivalent to the impact of a 9-m fall, accounting for the height of the vault at the near-surface disposal facility. The reinforcement methods with a high contribution to the structural performance of the container were concluded to be lattice and column reinforcements.