• Title/Summary/Keyword: Decoder Error Concealment

Search Result 28, Processing Time 0.02 seconds

High-Performance Spatial and Temporal Error-Concealment Algorithms for Block-Based Video Coding Techniques

  • Hsu, Ching-Ting;Chen, Mei-Juan;Liao, Wen-Wei;Lo, Shen-Yi
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • A compressed video bitstream is sensitive to errors that may severely degrade the reconstructed images even when the bit error rate is small. One approach to combat the impact of such errors is the use of error concealment at the decoder without increasing the bit rate or changing the encoder. For spatial-error concealment, we propose a method featuring edge continuity and texture preservation as well as low computation to reconstruct more visually acceptable images. Aiming at temporal error concealment, we propose a two-step algorithm based on block matching principles in which the assumption of smooth and uniform motion for some adjacent blocks is adopted. As simulation results show, the proposed spatial and temporal methods provide better reconstruction quality for damaged images than other methods.

  • PDF

An Effective Error-Concealment Approach for Video Data Transmission over Internet (인터넷상의 비디오 데이타 전송에 효과적인 오류 은닉 기법)

  • 김진옥
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.6
    • /
    • pp.736-745
    • /
    • 2002
  • In network delivery of compressed video, packets may be lost if the channel is unreliable like Internet. Such losses tend to of cur in burst like continuous bit-stream error. In this paper, we propose an effective error-concealment approach to which an error resilient video encoding approach is applied against burst errors and which reduces a complexity of error concealment at the decoder using data hiding. To improve the performance of error concealment, a temporal and spatial error resilient video encoding approach at encoder is developed to be robust against burst errors. For spatial area of error concealment, block shuffling scheme is introduced to isolate erroneous blocks caused by packet losses. For temporal area of error concealment, we embed parity bits in content data for motion vectors between intra frames or continuous inter frames and recovery loss packet with it at decoder after transmission While error concealment is performed on error blocks of video data at decoder, it is computationally costly to interpolate error video block using neighboring information. So, in this paper, a set of feature are extracted at the encoder and embedded imperceptibly into the original media. If some part of the media data is damaged during transmission, the embedded features can be extracted and used for recovery of lost data with bi-direction interpolation. The use of data hiding leads to reduced complexity at the decoder. Experimental results suggest that our approach can achieve a reasonable quality for packet loss up to 30% over a wide range of video materials.

Unequal Error Protection and Error Concealment Schemes for the Transmission of H.263 Video over Mobile Channels

  • Hong, Won-Gi;Ko, Sung-Jea
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.285-293
    • /
    • 1998
  • This paper presents unequal error protection and error concealment techniques far robust H.263 video transmission over mobile channels. The proposed error protection scheme has three major features. First, it has the capability of preventing the loss of synchronization information in H.263 video stream as much as possible that the H.263 decoder can resynchronize at the next decoding point, if errors are occurred. Secondly, it employs an unequal error protection scheme to support variable coding rates using rate compatible punctured convolutional (RCPC) codes, dividing the encoded stream into two classes. Finally, a macroblock-interleaving scheme is employed in order to minimize the corruption of consecutive macroblocks due to burst errors, which can make a proper condition for error concealment. In addition, to minimize the spatial error propagations due to the variable length codes, a fast resynchronization scheme at the group of block layer is developed for recovering subsequent error-free macroblocks following the damaged macroblock. futhermore, error concealment techniques based on both side match criterion and overlapped block motion compensation (OBMC) are employed at the source decoder so that it can not only recover the lost macroblock more accurately, but also reduce blocking artifacts. Experimental results show that the proposed scheme can be an effective error protection scheme since proper video quality can be maintained under various channel bit error rates.

  • PDF

Kalman filter based Motion Vector Recovery for H.264 (H.264 비디오 표준에서의 칼만 필터 기반의 움직임벡터 복원)

  • Ko, Ki-Hong;Kim, Seong-Whan
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.801-808
    • /
    • 2007
  • Video coding standards such as MPEG-2, MPEG-4, H.263, and H.264 transmit a compressed video data using wired/wireless communication line with limited bandwidth. Because highly compressed bit-streams is likely to fragile to error from channel noise, video is damaged by error. There have been many research works on error concealment techniques, which recover transmission errors at decoder side [1, 2]. We designed an error concealment technique for lost motion vectors of H.264 video coding. In this paper, we propose a Kalman filter based motion vector recovery scheme, and experimented with standard video sequences. The experimental results show that our scheme restores original motion vector with more precision of 0.91 - 1.12 on average over conventional H.264 decoding with no error recovery.

A Fast Error Concealment Using a Data Hiding Technique and a Robust Error Resilience for Video (데이터 숨김과 오류 내성 기법을 이용한 빠른 비디오 오류 은닉)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.143-150
    • /
    • 2003
  • Error concealment plays an important role in combating transmission errors. Methods of error concealment which produce better quality are generally of higher complexity, thus making some of the more sophisticated algorithms is not suitable for real-time applications. In this paper, we develop temporal and spatial error resilient video encoding and data hiding approach to facilitate the error concealment at the decoder. Block interleaving scheme is introduced to isolate erroneous blocks caused by packet losses for spatial area of error resilience. For temporal area of error resilience, data hiding is applied to the transmission of parity bits to protect motion vectors. To do error concealment quickly, a set of edge features extracted from a block is embedded imperceptibly using data hiding into the host media and transmitted to decoder. If some part of the media data is damaged during transmission, the embedded features are used for concealment of lost data at decoder. This method decreases a complexity of error concealment by reducing the estimation process of lost data from neighbor blocks. The proposed data hiding method of parity bits and block features is not influence much to the complexity of standard encoder. Experimental results show that proposed method conceals properly and effectively burst errors occurred on transmission channel like Internet.

Video Error Concealment using Neighboring Motion Vectors (주변의 움직임 벡터를 사용한 비디오 에러 은닉 기법)

  • 임유두;이병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.257-263
    • /
    • 2003
  • Error control and concealment in video communication is becoming increasingly important because transmission errors can cause single or multiple loss of macroblocks in video delivery over unreliable channels such as wireless networks and the internet. This paper describes a temporal error concealment by postprocessing. Lost image blocks are overlapped block motion compensated (OBMC) using median of motion vectors from adjacent blocks at the decoder. The results show a significant improvement over zero motion error concealment and other temporal concealment methods such as Motion Vector Rational Interpolation or Side Match Criterion OBMC by 1.4 to 3.5㏈ gain in PSNR. We present experimental results showing improvements in PSNR and computational complexity.

Motion Vector Recovery Using Extraction of homogeneous motion blocks (동일 움직임 블록 검출을 이용한 움직임 벡터 복원 기법)

  • 김정현;박성찬;이귀상
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.109-112
    • /
    • 2000
  • Bitstrems corrupted by channel errors are not only difficult to be decoded but also propagate error to other part of the bitstreams when highly compressed video is transmitted over channels with noise such as mobile communication channels. In this paper, error concealment algorithm performed in decoder is proposed when errors occur for transmission. Proposed algorithm searches moving area with homogeneous movement in neighbored blocks when motion vectors are damaged, then recovers motion vectors of missing blocks considering where missing blocks are belong to. Experiment result shows that proposed algorithm exhibits better performance in PSNR than existing error concealment method.

  • PDF

Subblock Based Temporal Error Concealment of Intra Frame for MPEG-2 (서브 블록을 이용한 MPEG-2 인트라 프레임의 시간적 오류 은닉)

  • Ryu, Chul;Kim, Won-Rak
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.167-169
    • /
    • 2005
  • The occurrence of a single bit error in transmission bitstream leads to serious temporal and spatial errors. Because moving picture coding as MPEG-2 based on block coding algorithm uses variable length coding and motion compensation coding algorithm. In this paper, we propose algorithm to conceal occurred error of I-frames in transmission channel using data of the neighboring blocks in decoder. We divide a damaged macroblock of I-frame into four sub blocks and compose new macroblock using the neighboring blocks for each sub block. We estimate the block with minimum difference value through block matching with previous frame for new macroblocks and replace each estimated block with damaged sub block in the same position. Through simulation results, the proposed algorithm will be applied to a characteristic of moving with effect and shows better performance than conventional error concealment algorithms from visual and PSNR of view.

  • PDF

Channel Condition Adaptive Error Concealment using Scalability Coding (채널상태에 적응적인 계층 부호화를 이용한 오류 은닉 방법 연구)

  • Han Seung-Gyun;Park Seung-Ho;Suh Doug-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1B
    • /
    • pp.8-17
    • /
    • 2004
  • In this paper: we propose the adaptive error concealment technique for scalable video coding over wireless network error prove environment. We prove it is very effective that Error concealment techniques proposed in this paper are applied to scalable video data. In this paper, we propose two methods of error concealment. First one is that the en·or is concealed using the motion vector of base layer and previous VOP data. Second one is that according to existence of motion vector in error position, the error is concealed using the same position data of base layer when the motion vector is existing otherwise using the same position data of previous VOP when the motion vector is 0(zero) adaptively. We show that according to various error pattern caused by condition of wireless network and characteristics of sequence, we refer decoder to base layer data or previous enhancement layer data to effective error concealment. Using scalable coding of MPEG-4 In this paper, this error concealment techniques are available to be used every codec based on DCT.

An Error Concealment Technique for MPEG-4 Video Transmission over Wireless Networks (무선 네트워크 환경에서의 MPEG-4 비디오 전송을 위한 에러 은닉 기법)

  • Park, Jeong-Beom;Eo, Jin-Woo
    • Journal of IKEEE
    • /
    • v.9 no.2 s.17
    • /
    • pp.170-178
    • /
    • 2005
  • The video data corrupted by the transmission error due to packet loss induce error propagation in decoded video data, and cause poor video quality. To remedy these corrupted video data, there have been introduced two types of error concealment techniques: spatial or temporal error concealment algorithm. Computational overhead by using spatial error concealment algorithm is a serious disadvantage in mobile video data streaming environment. In this paper, we propose hybrid type error concealment technique recovering video quality of mobile device using MPEG-4 video streaming on error-prone wireless network. Our algorithm is implemented in MPEG-4 decoder. The algorithm adopts Intel Wireless MMX technology to provide high performance of portable embedded multimedia mobile device. It is proven that the proposed algorithm shows expected performance for a mobile streaming system(PDA) on IP channels. Our approach showed better processing speed and better video quality comparing with traditional error concealment algorithm.

  • PDF