The Transactions of the Korean Institute of Electrical Engineers A
/
v.52
no.9
/
pp.513-520
/
2003
Service restoration is an emergency control in distribution constrol centers to restore out-of-service area as soon as possible when a fault occurs in distribution networks. therefore, it requires fast computation time and high quality solutions for load balancing. In this paper. a load balance index and heuristic guided best-first search are proposed for these problem. The proposed algorithm consists of two parts. One is to set up a decision tree to represent the various switching operations available. Another is to identify the most effective the set of switches using proposed search technique and a load balance index. Test results on the KEPCO's 108 bus distribution system show that the performance is efficient and robust.
Journal of the Korean Data and Information Science Society
/
v.16
no.1
/
pp.59-69
/
2005
Data mining is the method to find useful information for large amounts of data in database It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. We analyze Gyeongnam social indicator survey data by 2001 using association rule technique for environment information. Association rule mining searches for interesting relationships among items in a given large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. We can use to environmental preservation and environmental improvement by association rule outputs
Journal of the Korea Society of Computer and Information
/
v.10
no.5
s.37
/
pp.271-280
/
2005
This study is to elicit the factors affected on the medical examination in the tra야tional medicine using the technical method of the decision tree and characterize the Patient subject by clustering analysis technique. And to draw results from the association analysis between the form of diseases in the re-hospitalized Patient group. The obtained results were analyzed for their effect on the hospital Profits. Thus. through application of the database marketing to the data mining technique in the tradition리 medicine, the characteristics of patient clients for the objective induction of factors affected on the hospital Fronts can be identified. Practical application of the database marketing as presented in this study will bring about a fundamental efficiency of hospital management and vitalization.
Machine learning technique is recently opening new opportunities to identify the complex shear transfer mechanisms of reinforced concrete (RC) beam members. This study employed 1224 shear test specimens to train decision tree-based machine learning (ML) programs, by which strong correlations between shear capacity of RC beams and key input parameters were affirmed. In addition, shear contributions of concrete and shear reinforcement (the so-called Vc and Vs) were identified by establishing three independent ML models trained under different strategies with various combinations of datasets. Detailed parametric studies were then conducted by utilizing the well-trained ML models. It appeared that the presence of shear reinforcement can make the predicted shear contribution from concrete in RC beams larger than the pure shear contribution of concrete due to the intervention effect between shear reinforcement and concrete. On the other hand, the size effect also brought a significant impact on the shear contribution of concrete (Vc), whereas, the addition of shear reinforcements can effectively mitigate the size effect. It was also found that concrete tends to be the primary source of shear resistance when shear span-depth ratio a/d<1.0 while shear reinforcements become the primary source of shear resistance when a/d>2.0.
International Journal of Computer Science & Network Security
/
v.23
no.1
/
pp.53-63
/
2023
Many researchers are trying hard to minimize the incidence of cancers, mainly Gastric Cancer (GC). For GC, the five-year survival rate is generally 5-25%, but for Early Gastric Cancer (EGC), it is almost 90%. Predicting the onset of stomach cancer based on risk factors will allow for an early diagnosis and more effective treatment. Although there are several models for predicting stomach cancer, most of these models are based on unbalanced datasets, which favours the majority class. However, it is imperative to correctly identify cancer patients who are in the minority class. This research aims to apply three class-balancing approaches to the NHS dataset before developing supervised learning strategies: Oversampling (Synthetic Minority Oversampling Technique or SMOTE), Undersampling (SpreadSubsample), and Hybrid System (SMOTE + SpreadSubsample). This study uses Naive Bayes, Bayesian Network, Random Forest, and Decision Tree (C4.5) methods. We measured these classifiers' efficacy using their Receiver Operating Characteristics (ROC) curves, sensitivity, and specificity. The validation data was used to test several ways of balancing the classifiers. The final prediction model was built on the one that did the best overall.
A number of maritime accidents, and accident response activities, including the command and control procedures that were implemented at accident scenes, are analyzed to derive useful information about responding to maritime accidents, and to understand how the chain of events developed after the initial accident. In this research, a new concept of a 'risk based accident response support system' is proposed. In order to identify the event chains and associated hazards related to the accident response activities, this study proposes a 'Brainstorming technique for scenario identification', based on the concept of the HAZID technique. A modified version of Event Tree Analysis was used for quantitative risk analysis of maritime accident response activities. PERT/CPM was used to analyze accident response activities and for calculating overall (expected) response activity completion time. Also, the risk based accident response support system proposed in this paper is explained using a simple case study of risk analysis for oil tanker grounding accident response.
Journal of the Korea Society of Computer and Information
/
v.17
no.7
/
pp.167-174
/
2012
Data mining technique can be adapted to analysing Employment information in order to discover valuable information out of large data. As the issue employment such as jobless of college graduate, recruitment for women, recruitment for elders etc. became social problem, there are many efforts of various public employment services and studies. The factors that affects the college graduate's employment type (regular, temporary, daily) can be used to guide employment and to prepare employment for college students. In analyzing large number of attributes and the huge amount of data elements, regular statistical methods faces their limitation; therefore, data-mining technique is more suitable for the dataset of about 170 attributes and 20,000 elements. We divide the factors that may affect the employment type into personal factor, school factor, company factor, and experience factor; decision tree algorithm is used to find out the interesting relationship between the attributes of the factors and employment type. Personal factors such as the income of parents and marital status were the most affective factors to the employment type. The learned decision tree was able to classify the employment type with 87% of accuracy. We also assume the level of the school affects the employment type of the graduates.
Journal of the Korean Data and Information Science Society
/
v.28
no.6
/
pp.1337-1348
/
2017
In this paper, we develop the high-risk drinking predictive model in Korea using the cross-sectional data from Korea Community Health Survey (2014). We perform the logistic regression analysis, the decision tree analysis, and the neural network analysis using the data mining technique. The results of logistic regression analysis showed that men in their forties had a high risk and the risk of office workers and sales workers were high. Especially, current smokers had higher risk of high-risk drinking. Neural network analysis and logistic regression were the most significant in terms of AUROC (area under a receiver operation characteristic curve) among the three models. The high-risk drinking predictive model developed in this study and the selection method of the high-risk intensive drinking group can be the basis for providing more effective health care services such as hazardous drinking prevention education, and improvement of drinking program.
The Journal of the Convergence on Culture Technology
/
v.10
no.3
/
pp.461-466
/
2024
Korean local governments operates the participatory budgeting system autonomously. This study is to classify these entities into clusters. Among the diverse machine learning methodologies(Neural Network, Rule Induction(CN2), KNN, Decision Tree, Random Forest, Gradient Boosting, SVM, Naïve Bayes), the Support Vector Machine technique emerged as the most efficacious in the analysis of 2022 Korean municipalities data. The first cluster C1 is characterized by minimal committee activity but a substantial allocation of participatory budgeting; another cluster C3 comprises cities that exhibit a passive stance. The majority of cities falls into the final cluster C2 which is noted for its proactive engagement in. Overall, most Korean local government operates the participatory busgeting system in good shape. Only a small number of cities is less active in this system. We anticipate that analyzing time-series data from the past decade in follow-up studies will further enhance the reliability of classifying local government types regarding participatory budgeting.
Objectives: The aim of this study is to develop a methodology for estimating a nationwide statistic for hernia operations with using the claim database of the Korea Health Insurance Cooperation (KHIC). Methods: According to the insurance claim procedures, the claim database was divided into the electronic data interchange database (EDI_DB) and the sheet database (Paper_DB). Although the EDI_DB has operation and management codes showing the facts and kinds of operations, the Paper_DB doesn't. Using the hernia matched management code in the EDI_DB, the cases of hernia surgery were extracted. For drawing the potential cases from the Paper_DB, which doesn't have the code, the predictive model was developed using the data mining technique called SEMMA. The claim sheets of the cases that showed a predictive probability of an operation over the threshold, as was decided by the ROC curve, were identified in order to get the positive predictive value as an index of usefulness for the predictive model. Results: Of the claim databases in 2004, 14,386 cases had hernia related management codes with using the EDI system. For fitting the models with applying the data mining technique, logistic regression was chosen rather than the neural network method or the decision tree method. From the Paper_DB, 1,019 cases were extracted as potential cases. Direct review of the sheets of the extracted cases showed that the positive predictive value was 95.3%. Conclusions: The results suggested that applying the data mining technique to the claim database in the KHIC for estimating the nationwide surgical statistics would be useful from the aspect of execution and cost-effectiveness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.